MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restco Structured version   Unicode version

Theorem restco 18771
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )

Proof of Theorem restco
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2978 . . . . 5  |-  y  e. 
_V
21inex1 4436 . . . 4  |-  ( y  i^i  A )  e. 
_V
3 ineq1 3548 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( ( y  i^i  A )  i^i 
B ) )
4 inass 3563 . . . . 5  |-  ( ( y  i^i  A )  i^i  B )  =  ( y  i^i  ( A  i^i  B ) )
53, 4syl6eq 2491 . . . 4  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( y  i^i  ( A  i^i  B
) ) )
62, 5abrexco 5964 . . 3  |-  { z  |  E. x  e. 
{ w  |  E. y  e.  J  w  =  ( y  i^i 
A ) } z  =  ( x  i^i 
B ) }  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B
) ) }
7 eqid 2443 . . . . . 6  |-  ( y  e.  J  |->  ( y  i^i  A ) )  =  ( y  e.  J  |->  ( y  i^i 
A ) )
87rnmpt 5088 . . . . 5  |-  ran  (
y  e.  J  |->  ( y  i^i  A ) )  =  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }
9 mpteq1 4375 . . . . 5  |-  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )  =  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  ->  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ( x  e.  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  |->  ( x  i^i  B ) ) )
108, 9ax-mp 5 . . . 4  |-  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A ) ) 
|->  ( x  i^i  B
) )  =  ( x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }  |->  ( x  i^i  B ) )
1110rnmpt 5088 . . 3  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  { z  |  E. x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) } z  =  ( x  i^i 
B ) }
12 eqid 2443 . . . 4  |-  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )
1312rnmpt 5088 . . 3  |-  ran  (
y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B ) ) }
146, 11, 133eqtr4i 2473 . 2  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B
) ) )
15 restval 14368 . . . . 5  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
16153adant3 1008 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
1716oveq1d 6109 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B ) )
18 ovex 6119 . . . . 5  |-  ( Jt  A )  e.  _V
1916, 18syl6eqelr 2532 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V )
20 simp3 990 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  B  e.  X )
21 restval 14368 . . . 4  |-  ( ( ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B )  =  ran  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A
) )  |->  ( x  i^i  B ) ) )
2219, 20, 21syl2anc 661 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A ) )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
2317, 22eqtrd 2475 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
24 simp1 988 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  J  e.  V )
25 inex1g 4438 . . . 4  |-  ( A  e.  W  ->  ( A  i^i  B )  e. 
_V )
26253ad2ant2 1010 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( A  i^i  B
)  e.  _V )
27 restval 14368 . . 3  |-  ( ( J  e.  V  /\  ( A  i^i  B )  e.  _V )  -> 
( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
2824, 26, 27syl2anc 661 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
2914, 23, 283eqtr4a 2501 1  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 965    = wceq 1369    e. wcel 1756   {cab 2429   E.wrex 2719   _Vcvv 2975    i^i cin 3330    e. cmpt 4353   ran crn 4844  (class class class)co 6094   ↾t crest 14362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-rest 14364
This theorem is referenced by:  restabs  18772  restin  18773  resstopn  18793  ressuss  19841
  Copyright terms: Public domain W3C validator