MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restco Structured version   Visualization version   Unicode version

Theorem restco 20229
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )

Proof of Theorem restco
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3060 . . . . 5  |-  y  e. 
_V
21inex1 4558 . . . 4  |-  ( y  i^i  A )  e. 
_V
3 ineq1 3639 . . . . 5  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( ( y  i^i  A )  i^i 
B ) )
4 inass 3654 . . . . 5  |-  ( ( y  i^i  A )  i^i  B )  =  ( y  i^i  ( A  i^i  B ) )
53, 4syl6eq 2512 . . . 4  |-  ( x  =  ( y  i^i 
A )  ->  (
x  i^i  B )  =  ( y  i^i  ( A  i^i  B
) ) )
62, 5abrexco 6174 . . 3  |-  { z  |  E. x  e. 
{ w  |  E. y  e.  J  w  =  ( y  i^i 
A ) } z  =  ( x  i^i 
B ) }  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B
) ) }
7 eqid 2462 . . . . . 6  |-  ( y  e.  J  |->  ( y  i^i  A ) )  =  ( y  e.  J  |->  ( y  i^i 
A ) )
87rnmpt 5099 . . . . 5  |-  ran  (
y  e.  J  |->  ( y  i^i  A ) )  =  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }
9 mpteq1 4497 . . . . 5  |-  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )  =  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  ->  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ( x  e.  {
w  |  E. y  e.  J  w  =  ( y  i^i  A
) }  |->  ( x  i^i  B ) ) )
108, 9ax-mp 5 . . . 4  |-  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A ) ) 
|->  ( x  i^i  B
) )  =  ( x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) }  |->  ( x  i^i  B ) )
1110rnmpt 5099 . . 3  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  { z  |  E. x  e.  { w  |  E. y  e.  J  w  =  ( y  i^i  A ) } z  =  ( x  i^i 
B ) }
12 eqid 2462 . . . 4  |-  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )
1312rnmpt 5099 . . 3  |-  ran  (
y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) )  =  { z  |  E. y  e.  J  z  =  ( y  i^i  ( A  i^i  B ) ) }
146, 11, 133eqtr4i 2494 . 2  |-  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B
) ) )
15 restval 15374 . . . . 5  |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
16153adant3 1034 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  A )  =  ran  ( y  e.  J  |->  ( y  i^i  A
) ) )
1716oveq1d 6330 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B ) )
18 ovex 6343 . . . . 5  |-  ( Jt  A )  e.  _V
1916, 18syl6eqelr 2549 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V )
20 simp3 1016 . . . 4  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  B  e.  X )
21 restval 15374 . . . 4  |-  ( ( ran  ( y  e.  J  |->  ( y  i^i 
A ) )  e. 
_V  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A
) )t  B )  =  ran  ( x  e.  ran  ( y  e.  J  |->  ( y  i^i  A
) )  |->  ( x  i^i  B ) ) )
2219, 20, 21syl2anc 671 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ran  ( y  e.  J  |->  ( y  i^i  A ) )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
2317, 22eqtrd 2496 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ran  (
x  e.  ran  (
y  e.  J  |->  ( y  i^i  A ) )  |->  ( x  i^i 
B ) ) )
24 simp1 1014 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  J  e.  V )
25 inex1g 4560 . . . 4  |-  ( A  e.  W  ->  ( A  i^i  B )  e. 
_V )
26253ad2ant2 1036 . . 3  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( A  i^i  B
)  e.  _V )
27 restval 15374 . . 3  |-  ( ( J  e.  V  /\  ( A  i^i  B )  e.  _V )  -> 
( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
2824, 26, 27syl2anc 671 . 2  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( Jt  ( A  i^i  B ) )  =  ran  ( y  e.  J  |->  ( y  i^i  ( A  i^i  B ) ) ) )
2914, 23, 283eqtr4a 2522 1  |-  ( ( J  e.  V  /\  A  e.  W  /\  B  e.  X )  ->  ( ( Jt  A )t  B )  =  ( Jt  ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 991    = wceq 1455    e. wcel 1898   {cab 2448   E.wrex 2750   _Vcvv 3057    i^i cin 3415    |-> cmpt 4475   ran crn 4854  (class class class)co 6315   ↾t crest 15368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4529  ax-sep 4539  ax-nul 4548  ax-pr 4653  ax-un 6610
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-rest 15370
This theorem is referenced by:  restabs  20230  restin  20231  resstopn  20251  ressuss  21327
  Copyright terms: Public domain W3C validator