MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Unicode version

Theorem restcls 18785
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restcls  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )

Proof of Theorem restcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 988 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
2 sstr 3364 . . . . . . . 8  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
32ancoms 453 . . . . . . 7  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
433adant1 1006 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
5 restcls.1 . . . . . . 7  |-  X  = 
U. J
65clscld 18651 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
71, 4, 6syl2anc 661 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
8 eqid 2443 . . . . 5  |-  ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y )
9 ineq1 3545 . . . . . . 7  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( x  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )
109eqeq2d 2454 . . . . . 6  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( (
( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y )  <-> 
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) ) )
1110rspcev 3073 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  ( (
( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )  ->  E. x  e.  ( Clsd `  J ) ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y ) )
127, 8, 11sylancl 662 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) )
13 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
1413fveq2i 5694 . . . . . 6  |-  ( Clsd `  K )  =  (
Clsd `  ( Jt  Y
) )
1514eleq2i 2507 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  ( Jt  Y
) ) )
165restcld 18776 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
Y )  e.  (
Clsd `  ( Jt  Y
) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
17163adant3 1008 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
1815, 17syl5bb 257 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  <->  E. x  e.  (
Clsd `  J )
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( x  i^i 
Y ) ) )
1912, 18mpbird 232 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )
)
205sscls 18660 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
211, 4, 20syl2anc 661 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  J
) `  S )
)
22 simp3 990 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  Y )
2321, 22ssind 3574 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
24 eqid 2443 . . . 4  |-  U. K  =  U. K
2524clsss2 18676 . . 3  |-  ( ( ( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  /\  S  C_  (
( ( cls `  J
) `  S )  i^i  Y ) )  -> 
( ( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2619, 23, 25syl2anc 661 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2713fveq2i 5694 . . . . . 6  |-  ( cls `  K )  =  ( cls `  ( Jt  Y ) )
2827fveq1i 5692 . . . . 5  |-  ( ( cls `  K ) `
 S )  =  ( ( cls `  ( Jt  Y ) ) `  S )
29 id 22 . . . . . . . . 9  |-  ( Y 
C_  X  ->  Y  C_  X )
305topopn 18519 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
31 ssexg 4438 . . . . . . . . 9  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
3229, 30, 31syl2anr 478 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
33 resttop 18764 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
3432, 33syldan 470 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
35343adant3 1008 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
365restuni 18766 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
37363adant3 1008 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  =  U. ( Jt  Y ) )
3822, 37sseqtrd 3392 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
39 eqid 2443 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
4039clscld 18651 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4135, 38, 40syl2anc 661 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4228, 41syl5eqel 2527 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) ) )
435restcld 18776 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( cls `  K ) `  S
)  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
44433adant3 1008 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
4542, 44mpbid 210 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) )
4613, 34syl5eqel 2527 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  K  e.  Top )
47463adant3 1008 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
4813unieqi 4100 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
4948eqcomi 2447 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5049sscls 18660 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  S  C_  ( ( cls `  K
) `  S )
)
5147, 38, 50syl2anc 661 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  K
) `  S )
)
5251adantr 465 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  (
( cls `  K
) `  S )
)
53 inss1 3570 . . . . . . 7  |-  ( x  i^i  Y )  C_  x
54 sseq1 3377 . . . . . . 7  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( cls `  K
) `  S )  C_  x  <->  ( x  i^i 
Y )  C_  x
) )
5553, 54mpbiri 233 . . . . . 6  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( cls `  K
) `  S )  C_  x )
5655ad2antll 728 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( cls `  K ) `  S
)  C_  x )
5752, 56sstrd 3366 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  x
)
585clsss2 18676 . . . . . . . . . 10  |-  ( ( x  e.  ( Clsd `  J )  /\  S  C_  x )  ->  (
( cls `  J
) `  S )  C_  x )
5958adantl 466 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( cls `  J ) `  S
)  C_  x )
60 ssrin 3575 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  C_  x  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
)
6159, 60syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
x  i^i  Y )
)
62 sseq2 3378 . . . . . . . 8  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
) )
6361, 62syl5ibrcom 222 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  K ) `
 S )  =  ( x  i^i  Y
)  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
) )
6463expr 615 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  ( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6564com23 78 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( S  C_  x  ->  ( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6665impr 619 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( S  C_  x  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
) )
6757, 66mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
)
6845, 67rexlimddv 2845 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
)
6926, 68eqssd 3373 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2716   _Vcvv 2972    i^i cin 3327    C_ wss 3328   U.cuni 4091   ` cfv 5418  (class class class)co 6091   ↾t crest 14359   Topctop 18498   Clsdccld 18620   clsccl 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-oadd 6924  df-er 7101  df-en 7311  df-fin 7314  df-fi 7661  df-rest 14361  df-topgen 14382  df-top 18503  df-bases 18505  df-topon 18506  df-cld 18623  df-cls 18625
This theorem is referenced by:  restlp  18787  resscdrg  20870
  Copyright terms: Public domain W3C validator