MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Unicode version

Theorem restcls 18744
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restcls  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )

Proof of Theorem restcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 983 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
2 sstr 3361 . . . . . . . 8  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
32ancoms 450 . . . . . . 7  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
433adant1 1001 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
5 restcls.1 . . . . . . 7  |-  X  = 
U. J
65clscld 18610 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
71, 4, 6syl2anc 656 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
8 eqid 2441 . . . . 5  |-  ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y )
9 ineq1 3542 . . . . . . 7  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( x  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )
109eqeq2d 2452 . . . . . 6  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( (
( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y )  <-> 
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) ) )
1110rspcev 3070 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  ( (
( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )  ->  E. x  e.  ( Clsd `  J ) ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y ) )
127, 8, 11sylancl 657 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) )
13 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
1413fveq2i 5691 . . . . . 6  |-  ( Clsd `  K )  =  (
Clsd `  ( Jt  Y
) )
1514eleq2i 2505 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  ( Jt  Y
) ) )
165restcld 18735 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
Y )  e.  (
Clsd `  ( Jt  Y
) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
17163adant3 1003 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
1815, 17syl5bb 257 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  <->  E. x  e.  (
Clsd `  J )
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( x  i^i 
Y ) ) )
1912, 18mpbird 232 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )
)
205sscls 18619 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
211, 4, 20syl2anc 656 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  J
) `  S )
)
22 simp3 985 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  Y )
2321, 22ssind 3571 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
24 eqid 2441 . . . 4  |-  U. K  =  U. K
2524clsss2 18635 . . 3  |-  ( ( ( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  /\  S  C_  (
( ( cls `  J
) `  S )  i^i  Y ) )  -> 
( ( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2619, 23, 25syl2anc 656 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2713fveq2i 5691 . . . . . 6  |-  ( cls `  K )  =  ( cls `  ( Jt  Y ) )
2827fveq1i 5689 . . . . 5  |-  ( ( cls `  K ) `
 S )  =  ( ( cls `  ( Jt  Y ) ) `  S )
29 id 22 . . . . . . . . 9  |-  ( Y 
C_  X  ->  Y  C_  X )
305topopn 18478 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
31 ssexg 4435 . . . . . . . . 9  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
3229, 30, 31syl2anr 475 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
33 resttop 18723 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
3432, 33syldan 467 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
35343adant3 1003 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
365restuni 18725 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
37363adant3 1003 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  =  U. ( Jt  Y ) )
3822, 37sseqtrd 3389 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
39 eqid 2441 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
4039clscld 18610 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4135, 38, 40syl2anc 656 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4228, 41syl5eqel 2525 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) ) )
435restcld 18735 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( cls `  K ) `  S
)  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
44433adant3 1003 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
4542, 44mpbid 210 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) )
4613, 34syl5eqel 2525 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  K  e.  Top )
47463adant3 1003 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
4813unieqi 4097 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
4948eqcomi 2445 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5049sscls 18619 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  S  C_  ( ( cls `  K
) `  S )
)
5147, 38, 50syl2anc 656 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  K
) `  S )
)
5251adantr 462 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  (
( cls `  K
) `  S )
)
53 inss1 3567 . . . . . . 7  |-  ( x  i^i  Y )  C_  x
54 sseq1 3374 . . . . . . 7  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( cls `  K
) `  S )  C_  x  <->  ( x  i^i 
Y )  C_  x
) )
5553, 54mpbiri 233 . . . . . 6  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( cls `  K
) `  S )  C_  x )
5655ad2antll 723 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( cls `  K ) `  S
)  C_  x )
5752, 56sstrd 3363 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  x
)
585clsss2 18635 . . . . . . . . . 10  |-  ( ( x  e.  ( Clsd `  J )  /\  S  C_  x )  ->  (
( cls `  J
) `  S )  C_  x )
5958adantl 463 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( cls `  J ) `  S
)  C_  x )
60 ssrin 3572 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  C_  x  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
)
6159, 60syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
x  i^i  Y )
)
62 sseq2 3375 . . . . . . . 8  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
) )
6361, 62syl5ibrcom 222 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  K ) `
 S )  =  ( x  i^i  Y
)  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
) )
6463expr 612 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  ( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6564com23 78 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( S  C_  x  ->  ( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6665impr 616 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( S  C_  x  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
) )
6757, 66mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
)
6845, 67rexlimddv 2843 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
)
6926, 68eqssd 3370 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   E.wrex 2714   _Vcvv 2970    i^i cin 3324    C_ wss 3325   U.cuni 4088   ` cfv 5415  (class class class)co 6090   ↾t crest 14355   Topctop 18457   Clsdccld 18579   clsccl 18581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-oadd 6920  df-er 7097  df-en 7307  df-fin 7310  df-fi 7657  df-rest 14357  df-topgen 14378  df-top 18462  df-bases 18464  df-topon 18465  df-cld 18582  df-cls 18584
This theorem is referenced by:  restlp  18746  resscdrg  20829
  Copyright terms: Public domain W3C validator