MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Unicode version

Theorem restcls 19527
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restcls  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )

Proof of Theorem restcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 996 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
2 sstr 3517 . . . . . . . 8  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
32ancoms 453 . . . . . . 7  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
433adant1 1014 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
5 restcls.1 . . . . . . 7  |-  X  = 
U. J
65clscld 19393 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
71, 4, 6syl2anc 661 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
8 eqid 2467 . . . . 5  |-  ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y )
9 ineq1 3698 . . . . . . 7  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( x  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )
109eqeq2d 2481 . . . . . 6  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( (
( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y )  <-> 
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) ) )
1110rspcev 3219 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  ( (
( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )  ->  E. x  e.  ( Clsd `  J ) ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y ) )
127, 8, 11sylancl 662 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) )
13 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
1413fveq2i 5874 . . . . . 6  |-  ( Clsd `  K )  =  (
Clsd `  ( Jt  Y
) )
1514eleq2i 2545 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  ( Jt  Y
) ) )
165restcld 19518 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
Y )  e.  (
Clsd `  ( Jt  Y
) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
17163adant3 1016 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
1815, 17syl5bb 257 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  <->  E. x  e.  (
Clsd `  J )
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( x  i^i 
Y ) ) )
1912, 18mpbird 232 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )
)
205sscls 19402 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
211, 4, 20syl2anc 661 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  J
) `  S )
)
22 simp3 998 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  Y )
2321, 22ssind 3727 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
24 eqid 2467 . . . 4  |-  U. K  =  U. K
2524clsss2 19418 . . 3  |-  ( ( ( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  /\  S  C_  (
( ( cls `  J
) `  S )  i^i  Y ) )  -> 
( ( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2619, 23, 25syl2anc 661 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2713fveq2i 5874 . . . . . 6  |-  ( cls `  K )  =  ( cls `  ( Jt  Y ) )
2827fveq1i 5872 . . . . 5  |-  ( ( cls `  K ) `
 S )  =  ( ( cls `  ( Jt  Y ) ) `  S )
29 id 22 . . . . . . . . 9  |-  ( Y 
C_  X  ->  Y  C_  X )
305topopn 19261 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
31 ssexg 4598 . . . . . . . . 9  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
3229, 30, 31syl2anr 478 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
33 resttop 19506 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
3432, 33syldan 470 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
35343adant3 1016 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
365restuni 19508 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
37363adant3 1016 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  =  U. ( Jt  Y ) )
3822, 37sseqtrd 3545 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
39 eqid 2467 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
4039clscld 19393 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4135, 38, 40syl2anc 661 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4228, 41syl5eqel 2559 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) ) )
435restcld 19518 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( cls `  K ) `  S
)  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
44433adant3 1016 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
4542, 44mpbid 210 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) )
4613, 34syl5eqel 2559 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  K  e.  Top )
47463adant3 1016 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
4813unieqi 4259 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
4948eqcomi 2480 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5049sscls 19402 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  S  C_  ( ( cls `  K
) `  S )
)
5147, 38, 50syl2anc 661 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  K
) `  S )
)
5251adantr 465 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  (
( cls `  K
) `  S )
)
53 inss1 3723 . . . . . . 7  |-  ( x  i^i  Y )  C_  x
54 sseq1 3530 . . . . . . 7  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( cls `  K
) `  S )  C_  x  <->  ( x  i^i 
Y )  C_  x
) )
5553, 54mpbiri 233 . . . . . 6  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( cls `  K
) `  S )  C_  x )
5655ad2antll 728 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( cls `  K ) `  S
)  C_  x )
5752, 56sstrd 3519 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  x
)
585clsss2 19418 . . . . . . . . . 10  |-  ( ( x  e.  ( Clsd `  J )  /\  S  C_  x )  ->  (
( cls `  J
) `  S )  C_  x )
5958adantl 466 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( cls `  J ) `  S
)  C_  x )
60 ssrin 3728 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  C_  x  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
)
6159, 60syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
x  i^i  Y )
)
62 sseq2 3531 . . . . . . . 8  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
) )
6361, 62syl5ibrcom 222 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  K ) `
 S )  =  ( x  i^i  Y
)  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
) )
6463expr 615 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  ( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6564com23 78 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( S  C_  x  ->  ( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6665impr 619 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( S  C_  x  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
) )
6757, 66mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
)
6845, 67rexlimddv 2963 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
)
6926, 68eqssd 3526 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E.wrex 2818   _Vcvv 3118    i^i cin 3480    C_ wss 3481   U.cuni 4250   ` cfv 5593  (class class class)co 6294   ↾t crest 14688   Topctop 19240   Clsdccld 19362   clsccl 19364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-iin 4333  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-oadd 7144  df-er 7321  df-en 7527  df-fin 7530  df-fi 7881  df-rest 14690  df-topgen 14711  df-top 19245  df-bases 19247  df-topon 19248  df-cld 19365  df-cls 19367
This theorem is referenced by:  restlp  19529  resscdrg  21643
  Copyright terms: Public domain W3C validator