MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcls Structured version   Unicode version

Theorem restcls 20196
Description: A closure in a subspace topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1  |-  X  = 
U. J
restcls.2  |-  K  =  ( Jt  Y )
Assertion
Ref Expression
restcls  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )

Proof of Theorem restcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1 1005 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  J  e.  Top )
2 sstr 3472 . . . . . . . 8  |-  ( ( S  C_  Y  /\  Y  C_  X )  ->  S  C_  X )
32ancoms 454 . . . . . . 7  |-  ( ( Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
433adant1 1023 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  X )
5 restcls.1 . . . . . . 7  |-  X  = 
U. J
65clscld 20061 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
71, 4, 6syl2anc 665 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
8 eqid 2422 . . . . 5  |-  ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y )
9 ineq1 3657 . . . . . . 7  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( x  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )
109eqeq2d 2436 . . . . . 6  |-  ( x  =  ( ( cls `  J ) `  S
)  ->  ( (
( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y )  <-> 
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) ) )
1110rspcev 3182 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  ( (
( cls `  J
) `  S )  i^i  Y )  =  ( ( ( cls `  J
) `  S )  i^i  Y ) )  ->  E. x  e.  ( Clsd `  J ) ( ( ( cls `  J
) `  S )  i^i  Y )  =  ( x  i^i  Y ) )
127, 8, 11sylancl 666 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) )
13 restcls.2 . . . . . . 7  |-  K  =  ( Jt  Y )
1413fveq2i 5885 . . . . . 6  |-  ( Clsd `  K )  =  (
Clsd `  ( Jt  Y
) )
1514eleq2i 2499 . . . . 5  |-  ( ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  ( Jt  Y
) ) )
165restcld 20187 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
Y )  e.  (
Clsd `  ( Jt  Y
) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
17163adant3 1025 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( ( cls `  J ) `
 S )  i^i 
Y )  =  ( x  i^i  Y ) ) )
1815, 17syl5bb 260 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  <->  E. x  e.  (
Clsd `  J )
( ( ( cls `  J ) `  S
)  i^i  Y )  =  ( x  i^i 
Y ) ) )
1912, 18mpbird 235 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  e.  (
Clsd `  K )
)
205sscls 20070 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  C_  ( ( cls `  J ) `  S
) )
211, 4, 20syl2anc 665 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  J
) `  S )
)
22 simp3 1007 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  Y )
2321, 22ssind 3686 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
24 eqid 2422 . . . 4  |-  U. K  =  U. K
2524clsss2 20087 . . 3  |-  ( ( ( ( ( cls `  J ) `  S
)  i^i  Y )  e.  ( Clsd `  K
)  /\  S  C_  (
( ( cls `  J
) `  S )  i^i  Y ) )  -> 
( ( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2619, 23, 25syl2anc 665 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  C_  ( ( ( cls `  J ) `  S
)  i^i  Y )
)
2713fveq2i 5885 . . . . . 6  |-  ( cls `  K )  =  ( cls `  ( Jt  Y ) )
2827fveq1i 5883 . . . . 5  |-  ( ( cls `  K ) `
 S )  =  ( ( cls `  ( Jt  Y ) ) `  S )
29 id 22 . . . . . . . . 9  |-  ( Y 
C_  X  ->  Y  C_  X )
305topopn 19935 . . . . . . . . 9  |-  ( J  e.  Top  ->  X  e.  J )
31 ssexg 4570 . . . . . . . . 9  |-  ( ( Y  C_  X  /\  X  e.  J )  ->  Y  e.  _V )
3229, 30, 31syl2anr 480 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  e.  _V )
33 resttop 20175 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  e.  _V )  ->  ( Jt  Y )  e.  Top )
3432, 33syldan 472 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( Jt  Y )  e.  Top )
35343adant3 1025 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  ( Jt  Y )  e.  Top )
365restuni 20177 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  Y  =  U. ( Jt  Y ) )
37363adant3 1025 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  Y  =  U. ( Jt  Y ) )
3822, 37sseqtrd 3500 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_ 
U. ( Jt  Y ) )
39 eqid 2422 . . . . . . 7  |-  U. ( Jt  Y )  =  U. ( Jt  Y )
4039clscld 20061 . . . . . 6  |-  ( ( ( Jt  Y )  e.  Top  /\  S  C_  U. ( Jt  Y ) )  -> 
( ( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4135, 38, 40syl2anc 665 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  ( Jt  Y ) ) `  S )  e.  (
Clsd `  ( Jt  Y
) ) )
4228, 41syl5eqel 2511 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) ) )
435restcld 20187 . . . . 5  |-  ( ( J  e.  Top  /\  Y  C_  X )  -> 
( ( ( cls `  K ) `  S
)  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
44433adant3 1025 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  K
) `  S )  e.  ( Clsd `  ( Jt  Y ) )  <->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) ) )
4542, 44mpbid 213 . . 3  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  E. x  e.  ( Clsd `  J
) ( ( cls `  K ) `  S
)  =  ( x  i^i  Y ) )
4613, 34syl5eqel 2511 . . . . . . . 8  |-  ( ( J  e.  Top  /\  Y  C_  X )  ->  K  e.  Top )
47463adant3 1025 . . . . . . 7  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  K  e.  Top )
4813unieqi 4228 . . . . . . . . 9  |-  U. K  =  U. ( Jt  Y )
4948eqcomi 2435 . . . . . . . 8  |-  U. ( Jt  Y )  =  U. K
5049sscls 20070 . . . . . . 7  |-  ( ( K  e.  Top  /\  S  C_  U. ( Jt  Y ) )  ->  S  C_  ( ( cls `  K
) `  S )
)
5147, 38, 50syl2anc 665 . . . . . 6  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  S  C_  ( ( cls `  K
) `  S )
)
5251adantr 466 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  (
( cls `  K
) `  S )
)
53 inss1 3682 . . . . . . 7  |-  ( x  i^i  Y )  C_  x
54 sseq1 3485 . . . . . . 7  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( cls `  K
) `  S )  C_  x  <->  ( x  i^i 
Y )  C_  x
) )
5553, 54mpbiri 236 . . . . . 6  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( cls `  K
) `  S )  C_  x )
5655ad2antll 733 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( cls `  K ) `  S
)  C_  x )
5752, 56sstrd 3474 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  S  C_  x
)
585clsss2 20087 . . . . . . . . . 10  |-  ( ( x  e.  ( Clsd `  J )  /\  S  C_  x )  ->  (
( cls `  J
) `  S )  C_  x )
5958adantl 467 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( cls `  J ) `  S
)  C_  x )
60 ssrin 3687 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  C_  x  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
)
6159, 60syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
x  i^i  Y )
)
62 sseq2 3486 . . . . . . . 8  |-  ( ( ( cls `  K
) `  S )  =  ( x  i^i 
Y )  ->  (
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )  <->  ( ( ( cls `  J
) `  S )  i^i  Y )  C_  (
x  i^i  Y )
) )
6361, 62syl5ibrcom 225 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  S  C_  x ) )  ->  ( ( ( cls `  K ) `
 S )  =  ( x  i^i  Y
)  ->  ( (
( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
) )
6463expr 618 . . . . . 6  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  ( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6564com23 81 . . . . 5  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  x  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  K ) `  S
)  =  ( x  i^i  Y )  -> 
( S  C_  x  ->  ( ( ( cls `  J ) `  S
)  i^i  Y )  C_  ( ( cls `  K
) `  S )
) ) )
6665impr 623 . . . 4  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( S  C_  x  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
) )
6757, 66mpd 15 . . 3  |-  ( ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  /\  ( x  e.  ( Clsd `  J )  /\  ( ( cls `  K
) `  S )  =  ( x  i^i 
Y ) ) )  ->  ( ( ( cls `  J ) `
 S )  i^i 
Y )  C_  (
( cls `  K
) `  S )
)
6845, 67rexlimddv 2918 . 2  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( ( cls `  J
) `  S )  i^i  Y )  C_  (
( cls `  K
) `  S )
)
6926, 68eqssd 3481 1  |-  ( ( J  e.  Top  /\  Y  C_  X  /\  S  C_  Y )  ->  (
( cls `  K
) `  S )  =  ( ( ( cls `  J ) `
 S )  i^i 
Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872   E.wrex 2772   _Vcvv 3080    i^i cin 3435    C_ wss 3436   U.cuni 4219   ` cfv 5601  (class class class)co 6306   ↾t crest 15319   Topctop 19916   Clsdccld 20030   clsccl 20032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-om 6708  df-1st 6808  df-2nd 6809  df-wrecs 7040  df-recs 7102  df-rdg 7140  df-oadd 7198  df-er 7375  df-en 7582  df-fin 7585  df-fi 7935  df-rest 15321  df-topgen 15342  df-top 19920  df-bases 19921  df-topon 19922  df-cld 20033  df-cls 20035
This theorem is referenced by:  restlp  20198  resscdrg  22324
  Copyright terms: Public domain W3C validator