MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcld Structured version   Unicode version

Theorem restcld 19467
Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restcld.1  |-  X  = 
U. J
Assertion
Ref Expression
restcld  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A  e.  (
Clsd `  ( Jt  S
) )  <->  E. x  e.  ( Clsd `  J
) A  =  ( x  i^i  S ) ) )
Distinct variable groups:    x, A    x, J    x, S    x, X

Proof of Theorem restcld
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5  |-  ( S 
C_  X  ->  S  C_  X )
2 restcld.1 . . . . . 6  |-  X  = 
U. J
32topopn 19210 . . . . 5  |-  ( J  e.  Top  ->  X  e.  J )
4 ssexg 4593 . . . . 5  |-  ( ( S  C_  X  /\  X  e.  J )  ->  S  e.  _V )
51, 3, 4syl2anr 478 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  e.  _V )
6 resttop 19455 . . . 4  |-  ( ( J  e.  Top  /\  S  e.  _V )  ->  ( Jt  S )  e.  Top )
75, 6syldan 470 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( Jt  S )  e.  Top )
8 eqid 2467 . . . 4  |-  U. ( Jt  S )  =  U. ( Jt  S )
98iscld 19322 . . 3  |-  ( ( Jt  S )  e.  Top  ->  ( A  e.  (
Clsd `  ( Jt  S
) )  <->  ( A  C_ 
U. ( Jt  S )  /\  ( U. ( Jt  S )  \  A
)  e.  ( Jt  S ) ) ) )
107, 9syl 16 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A  e.  (
Clsd `  ( Jt  S
) )  <->  ( A  C_ 
U. ( Jt  S )  /\  ( U. ( Jt  S )  \  A
)  e.  ( Jt  S ) ) ) )
112restuni 19457 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  S  =  U. ( Jt  S ) )
1211sseq2d 3532 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A  C_  S  <->  A 
C_  U. ( Jt  S ) ) )
1311difeq1d 3621 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  \  A
)  =  ( U. ( Jt  S )  \  A
) )
1413eleq1d 2536 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( S  \  A )  e.  ( Jt  S )  <->  ( U. ( Jt  S )  \  A
)  e.  ( Jt  S ) ) )
1512, 14anbi12d 710 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( A  C_  S  /\  ( S  \  A )  e.  ( Jt  S ) )  <->  ( A  C_ 
U. ( Jt  S )  /\  ( U. ( Jt  S )  \  A
)  e.  ( Jt  S ) ) ) )
16 elrest 14683 . . . . . 6  |-  ( ( J  e.  Top  /\  S  e.  _V )  ->  ( ( S  \  A )  e.  ( Jt  S )  <->  E. o  e.  J  ( S  \  A )  =  ( o  i^i  S ) ) )
175, 16syldan 470 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( S  \  A )  e.  ( Jt  S )  <->  E. o  e.  J  ( S  \  A )  =  ( o  i^i  S ) ) )
1817anbi2d 703 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( A  C_  S  /\  ( S  \  A )  e.  ( Jt  S ) )  <->  ( A  C_  S  /\  E. o  e.  J  ( S  \  A )  =  ( o  i^i  S ) ) ) )
192opncld 19328 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  o  e.  J )  ->  ( X  \  o
)  e.  ( Clsd `  J ) )
2019adantlr 714 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  o  e.  J
)  ->  ( X  \  o )  e.  (
Clsd `  J )
)
2120adantlr 714 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  A  C_  S
)  /\  o  e.  J )  ->  ( X  \  o )  e.  ( Clsd `  J
) )
2221adantr 465 . . . . . . . 8  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  ( X  \  o )  e.  ( Clsd `  J
) )
23 incom 3691 . . . . . . . . . . . . 13  |-  ( X  i^i  S )  =  ( S  i^i  X
)
24 df-ss 3490 . . . . . . . . . . . . . 14  |-  ( S 
C_  X  <->  ( S  i^i  X )  =  S )
2524biimpi 194 . . . . . . . . . . . . 13  |-  ( S 
C_  X  ->  ( S  i^i  X )  =  S )
2623, 25syl5eq 2520 . . . . . . . . . . . 12  |-  ( S 
C_  X  ->  ( X  i^i  S )  =  S )
2726ad4antlr 732 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  ( X  i^i  S )  =  S )
2827difeq1d 3621 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  (
( X  i^i  S
)  \  o )  =  ( S  \ 
o ) )
29 difeq2 3616 . . . . . . . . . . . 12  |-  ( ( S  \  A )  =  ( o  i^i 
S )  ->  ( S  \  ( S  \  A ) )  =  ( S  \  (
o  i^i  S )
) )
30 difindi 3752 . . . . . . . . . . . . 13  |-  ( S 
\  ( o  i^i 
S ) )  =  ( ( S  \ 
o )  u.  ( S  \  S ) )
31 difid 3895 . . . . . . . . . . . . . 14  |-  ( S 
\  S )  =  (/)
3231uneq2i 3655 . . . . . . . . . . . . 13  |-  ( ( S  \  o )  u.  ( S  \  S ) )  =  ( ( S  \ 
o )  u.  (/) )
33 un0 3810 . . . . . . . . . . . . 13  |-  ( ( S  \  o )  u.  (/) )  =  ( S  \  o )
3430, 32, 333eqtri 2500 . . . . . . . . . . . 12  |-  ( S 
\  ( o  i^i 
S ) )  =  ( S  \  o
)
3529, 34syl6eq 2524 . . . . . . . . . . 11  |-  ( ( S  \  A )  =  ( o  i^i 
S )  ->  ( S  \  ( S  \  A ) )  =  ( S  \  o
) )
3635adantl 466 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  ( S  \  ( S  \  A ) )  =  ( S  \  o
) )
37 dfss4 3732 . . . . . . . . . . . 12  |-  ( A 
C_  S  <->  ( S  \  ( S  \  A
) )  =  A )
3837biimpi 194 . . . . . . . . . . 11  |-  ( A 
C_  S  ->  ( S  \  ( S  \  A ) )  =  A )
3938ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  ( S  \  ( S  \  A ) )  =  A )
4028, 36, 393eqtr2rd 2515 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  A  =  ( ( X  i^i  S )  \ 
o ) )
4123difeq1i 3618 . . . . . . . . . 10  |-  ( ( X  i^i  S ) 
\  o )  =  ( ( S  i^i  X )  \  o )
42 indif2 3741 . . . . . . . . . 10  |-  ( S  i^i  ( X  \ 
o ) )  =  ( ( S  i^i  X )  \  o )
43 incom 3691 . . . . . . . . . 10  |-  ( S  i^i  ( X  \ 
o ) )  =  ( ( X  \ 
o )  i^i  S
)
4441, 42, 433eqtr2i 2502 . . . . . . . . 9  |-  ( ( X  i^i  S ) 
\  o )  =  ( ( X  \ 
o )  i^i  S
)
4540, 44syl6eq 2524 . . . . . . . 8  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  A  =  ( ( X 
\  o )  i^i 
S ) )
46 ineq1 3693 . . . . . . . . . 10  |-  ( x  =  ( X  \ 
o )  ->  (
x  i^i  S )  =  ( ( X 
\  o )  i^i 
S ) )
4746eqeq2d 2481 . . . . . . . . 9  |-  ( x  =  ( X  \ 
o )  ->  ( A  =  ( x  i^i  S )  <->  A  =  ( ( X  \ 
o )  i^i  S
) ) )
4847rspcev 3214 . . . . . . . 8  |-  ( ( ( X  \  o
)  e.  ( Clsd `  J )  /\  A  =  ( ( X 
\  o )  i^i 
S ) )  ->  E. x  e.  ( Clsd `  J ) A  =  ( x  i^i 
S ) )
4922, 45, 48syl2anc 661 . . . . . . 7  |-  ( ( ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  /\  o  e.  J )  /\  ( S  \  A )  =  ( o  i^i  S
) )  ->  E. x  e.  ( Clsd `  J
) A  =  ( x  i^i  S ) )
5049ex 434 . . . . . 6  |-  ( ( ( ( J  e. 
Top  /\  S  C_  X
)  /\  A  C_  S
)  /\  o  e.  J )  ->  (
( S  \  A
)  =  ( o  i^i  S )  ->  E. x  e.  ( Clsd `  J ) A  =  ( x  i^i 
S ) ) )
5150rexlimdva 2955 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A  C_  S )  ->  ( E. o  e.  J  ( S  \  A )  =  ( o  i^i  S )  ->  E. x  e.  (
Clsd `  J ) A  =  ( x  i^i  S ) ) )
5251expimpd 603 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( A  C_  S  /\  E. o  e.  J  ( S  \  A )  =  ( o  i^i  S ) )  ->  E. x  e.  ( Clsd `  J
) A  =  ( x  i^i  S ) ) )
5318, 52sylbid 215 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( A  C_  S  /\  ( S  \  A )  e.  ( Jt  S ) )  ->  E. x  e.  ( Clsd `  J ) A  =  ( x  i^i 
S ) ) )
54 difindi 3752 . . . . . . . . . 10  |-  ( S 
\  ( x  i^i 
S ) )  =  ( ( S  \  x )  u.  ( S  \  S ) )
5531uneq2i 3655 . . . . . . . . . 10  |-  ( ( S  \  x )  u.  ( S  \  S ) )  =  ( ( S  \  x )  u.  (/) )
56 un0 3810 . . . . . . . . . 10  |-  ( ( S  \  x )  u.  (/) )  =  ( S  \  x )
5754, 55, 563eqtri 2500 . . . . . . . . 9  |-  ( S 
\  ( x  i^i 
S ) )  =  ( S  \  x
)
58 difin2 3760 . . . . . . . . . 10  |-  ( S 
C_  X  ->  ( S  \  x )  =  ( ( X  \  x )  i^i  S
) )
5958adantl 466 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  \  x
)  =  ( ( X  \  x )  i^i  S ) )
6057, 59syl5eq 2520 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  \  (
x  i^i  S )
)  =  ( ( X  \  x )  i^i  S ) )
6160adantr 465 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  ( S  \ 
( x  i^i  S
) )  =  ( ( X  \  x
)  i^i  S )
)
62 simpll 753 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  J  e.  Top )
635adantr 465 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  S  e.  _V )
642cldopn 19326 . . . . . . . . 9  |-  ( x  e.  ( Clsd `  J
)  ->  ( X  \  x )  e.  J
)
6564adantl 466 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  ( X  \  x )  e.  J
)
66 elrestr 14684 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  e.  _V  /\  ( X  \  x )  e.  J )  ->  (
( X  \  x
)  i^i  S )  e.  ( Jt  S ) )
6762, 63, 65, 66syl3anc 1228 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  ( ( X 
\  x )  i^i 
S )  e.  ( Jt  S ) )
6861, 67eqeltrd 2555 . . . . . 6  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  ( S  \ 
( x  i^i  S
) )  e.  ( Jt  S ) )
69 inss2 3719 . . . . . 6  |-  ( x  i^i  S )  C_  S
7068, 69jctil 537 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  ( ( x  i^i  S )  C_  S  /\  ( S  \ 
( x  i^i  S
) )  e.  ( Jt  S ) ) )
71 sseq1 3525 . . . . . 6  |-  ( A  =  ( x  i^i 
S )  ->  ( A  C_  S  <->  ( x  i^i  S )  C_  S
) )
72 difeq2 3616 . . . . . . 7  |-  ( A  =  ( x  i^i 
S )  ->  ( S  \  A )  =  ( S  \  (
x  i^i  S )
) )
7372eleq1d 2536 . . . . . 6  |-  ( A  =  ( x  i^i 
S )  ->  (
( S  \  A
)  e.  ( Jt  S )  <->  ( S  \ 
( x  i^i  S
) )  e.  ( Jt  S ) ) )
7471, 73anbi12d 710 . . . . 5  |-  ( A  =  ( x  i^i 
S )  ->  (
( A  C_  S  /\  ( S  \  A
)  e.  ( Jt  S ) )  <->  ( (
x  i^i  S )  C_  S  /\  ( S 
\  ( x  i^i 
S ) )  e.  ( Jt  S ) ) ) )
7570, 74syl5ibrcom 222 . . . 4  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( Clsd `  J ) )  ->  ( A  =  ( x  i^i  S
)  ->  ( A  C_  S  /\  ( S 
\  A )  e.  ( Jt  S ) ) ) )
7675rexlimdva 2955 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( E. x  e.  ( Clsd `  J
) A  =  ( x  i^i  S )  ->  ( A  C_  S  /\  ( S  \  A )  e.  ( Jt  S ) ) ) )
7753, 76impbid 191 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( A  C_  S  /\  ( S  \  A )  e.  ( Jt  S ) )  <->  E. x  e.  ( Clsd `  J
) A  =  ( x  i^i  S ) ) )
7810, 15, 773bitr2d 281 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A  e.  (
Clsd `  ( Jt  S
) )  <->  E. x  e.  ( Clsd `  J
) A  =  ( x  i^i  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   U.cuni 4245   ` cfv 5588  (class class class)co 6284   ↾t crest 14676   Topctop 19189   Clsdccld 19311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520  df-fi 7871  df-rest 14678  df-topgen 14699  df-top 19194  df-bases 19196  df-topon 19197  df-cld 19314
This theorem is referenced by:  restcldi  19468  restcldr  19469  restcls  19476  consubclo  19719  cldllycmp  19790
  Copyright terms: Public domain W3C validator