MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restbas Structured version   Unicode version

Theorem restbas 18765
Description: A subspace topology basis is a basis.  Y is normally a subset of the base set of  J. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restbas  |-  ( B  e.  TopBases  ->  ( Bt  A )  e.  TopBases )

Proof of Theorem restbas
Dummy variables  a 
b  c  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrest 14369 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
a  e.  ( Bt  A )  <->  E. u  e.  B  a  =  ( u  i^i  A ) ) )
2 elrest 14369 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
b  e.  ( Bt  A )  <->  E. v  e.  B  b  =  ( v  i^i  A ) ) )
31, 2anbi12d 710 . . . . . 6  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  <->  ( E. u  e.  B  a  =  ( u  i^i 
A )  /\  E. v  e.  B  b  =  ( v  i^i 
A ) ) ) )
4 reeanv 2891 . . . . . 6  |-  ( E. u  e.  B  E. v  e.  B  (
a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  <->  ( E. u  e.  B  a  =  ( u  i^i 
A )  /\  E. v  e.  B  b  =  ( v  i^i 
A ) ) )
53, 4syl6bbr 263 . . . . 5  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  <->  E. u  e.  B  E. v  e.  B  ( a  =  ( u  i^i 
A )  /\  b  =  ( v  i^i 
A ) ) ) )
6 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  B  e.  TopBases )
7 simplrl 759 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  u  e.  B )
8 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
v  e.  B )
9 inss1 3573 . . . . . . . . . . 11  |-  ( ( u  i^i  v )  i^i  A )  C_  ( u  i^i  v
)
10 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
c  e.  ( ( u  i^i  v )  i^i  A ) )
119, 10sseldi 3357 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
c  e.  ( u  i^i  v ) )
12 basis2 18559 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  e.  B )  /\  ( v  e.  B  /\  c  e.  (
u  i^i  v )
) )  ->  E. z  e.  B  ( c  e.  z  /\  z  C_  ( u  i^i  v
) ) )
136, 7, 8, 11, 12syl22anc 1219 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  E. z  e.  B  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) )
14 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( B  e.  TopBases  /\  A  e.  _V )
)
1514simpld 459 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  B  e.  TopBases )
1614simprd 463 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  A  e.  _V )
17 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
z  e.  B )
18 elrestr 14370 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  A  e.  _V  /\  z  e.  B )  ->  (
z  i^i  A )  e.  ( Bt  A ) )
1915, 16, 17, 18syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( z  i^i  A
)  e.  ( Bt  A ) )
20 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  z )
21 inss2 3574 . . . . . . . . . . . 12  |-  ( ( u  i^i  v )  i^i  A )  C_  A
22 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  ( ( u  i^i  v )  i^i  A ) )
2321, 22sseldi 3357 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  A )
2420, 23elind 3543 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  ( z  i^i  A ) )
25 simprrr 764 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
z  C_  ( u  i^i  v ) )
26 ssrin 3578 . . . . . . . . . . 11  |-  ( z 
C_  ( u  i^i  v )  ->  (
z  i^i  A )  C_  ( ( u  i^i  v )  i^i  A
) )
2725, 26syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( z  i^i  A
)  C_  ( (
u  i^i  v )  i^i  A ) )
28 eleq2 2504 . . . . . . . . . . . 12  |-  ( w  =  ( z  i^i 
A )  ->  (
c  e.  w  <->  c  e.  ( z  i^i  A
) ) )
29 sseq1 3380 . . . . . . . . . . . 12  |-  ( w  =  ( z  i^i 
A )  ->  (
w  C_  ( (
u  i^i  v )  i^i  A )  <->  ( z  i^i  A )  C_  (
( u  i^i  v
)  i^i  A )
) )
3028, 29anbi12d 710 . . . . . . . . . . 11  |-  ( w  =  ( z  i^i 
A )  ->  (
( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A ) )  <-> 
( c  e.  ( z  i^i  A )  /\  ( z  i^i 
A )  C_  (
( u  i^i  v
)  i^i  A )
) ) )
3130rspcev 3076 . . . . . . . . . 10  |-  ( ( ( z  i^i  A
)  e.  ( Bt  A )  /\  ( c  e.  ( z  i^i 
A )  /\  (
z  i^i  A )  C_  ( ( u  i^i  v )  i^i  A
) ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3219, 24, 27, 31syl12anc 1216 . . . . . . . . 9  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3313, 32rexlimddv 2848 . . . . . . . 8  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3433ralrimiva 2802 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B
) )  ->  A. c  e.  ( ( u  i^i  v )  i^i  A
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
35 ineq12 3550 . . . . . . . . 9  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( a  i^i  b
)  =  ( ( u  i^i  A )  i^i  ( v  i^i 
A ) ) )
36 inindir 3571 . . . . . . . . 9  |-  ( ( u  i^i  v )  i^i  A )  =  ( ( u  i^i 
A )  i^i  (
v  i^i  A )
)
3735, 36syl6eqr 2493 . . . . . . . 8  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( a  i^i  b
)  =  ( ( u  i^i  v )  i^i  A ) )
3837sseq2d 3387 . . . . . . . . . 10  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( w  C_  (
a  i^i  b )  <->  w 
C_  ( ( u  i^i  v )  i^i 
A ) ) )
3938anbi2d 703 . . . . . . . . 9  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
4039rexbidv 2739 . . . . . . . 8  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
4137, 40raleqbidv 2934 . . . . . . 7  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  A. c  e.  ( ( u  i^i  v )  i^i  A
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
4234, 41syl5ibrcom 222 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B
) )  ->  (
( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  ->  A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4342rexlimdvva 2851 . . . . 5  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  ( E. u  e.  B  E. v  e.  B  ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  ->  A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
445, 43sylbid 215 . . . 4  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  ->  A. c  e.  (
a  i^i  b ) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4544ralrimivv 2810 . . 3  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) )
46 ovex 6119 . . . 4  |-  ( Bt  A )  e.  _V
47 isbasis2g 18556 . . . 4  |-  ( ( Bt  A )  e.  _V  ->  ( ( Bt  A )  e.  TopBases 
<-> 
A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4846, 47ax-mp 5 . . 3  |-  ( ( Bt  A )  e.  TopBases  <->  A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) )
4945, 48sylibr 212 . 2  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  ( Bt  A )  e.  TopBases )
50 relxp 4950 . . . . . 6  |-  Rel  ( _V  X.  _V )
51 restfn 14366 . . . . . . . 8  |-t  Fn  ( _V  X.  _V )
52 fndm 5513 . . . . . . . 8  |-  (t  Fn  ( _V  X.  _V )  ->  domt  =  ( _V  X.  _V ) )
5351, 52ax-mp 5 . . . . . . 7  |-  domt  =  ( _V  X.  _V )
5453releqi 4926 . . . . . 6  |-  ( Rel 
domt  <->  Rel  ( _V  X.  _V ) )
5550, 54mpbir 209 . . . . 5  |-  Rel  domt
5655ovprc2 6123 . . . 4  |-  ( -.  A  e.  _V  ->  ( Bt  A )  =  (/) )
5756adantl 466 . . 3  |-  ( ( B  e.  TopBases  /\  -.  A  e.  _V )  ->  ( Bt  A )  =  (/) )
58 fi0 7673 . . . 4  |-  ( fi
`  (/) )  =  (/)
59 fibas 18585 . . . 4  |-  ( fi
`  (/) )  e.  TopBases
6058, 59eqeltrri 2514 . . 3  |-  (/)  e.  TopBases
6157, 60syl6eqel 2531 . 2  |-  ( ( B  e.  TopBases  /\  -.  A  e.  _V )  ->  ( Bt  A )  e.  TopBases )
6249, 61pm2.61dan 789 1  |-  ( B  e.  TopBases  ->  ( Bt  A )  e.  TopBases )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719   _Vcvv 2975    i^i cin 3330    C_ wss 3331   (/)c0 3640    X. cxp 4841   dom cdm 4843   Rel wrel 4848    Fn wfn 5416   ` cfv 5421  (class class class)co 6094   ficfi 7663   ↾t crest 14362   TopBasesctb 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-oadd 6927  df-er 7104  df-en 7314  df-fin 7317  df-fi 7664  df-rest 14364  df-bases 18508
This theorem is referenced by:  resttop  18767  2ndcrest  19061
  Copyright terms: Public domain W3C validator