MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restbas Structured version   Unicode version

Theorem restbas 19465
Description: A subspace topology basis is a basis.  Y is normally a subset of the base set of  J. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
restbas  |-  ( B  e.  TopBases  ->  ( Bt  A )  e.  TopBases )

Proof of Theorem restbas
Dummy variables  a 
b  c  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrest 14686 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
a  e.  ( Bt  A )  <->  E. u  e.  B  a  =  ( u  i^i  A ) ) )
2 elrest 14686 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
b  e.  ( Bt  A )  <->  E. v  e.  B  b  =  ( v  i^i  A ) ) )
31, 2anbi12d 710 . . . . . 6  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  <->  ( E. u  e.  B  a  =  ( u  i^i 
A )  /\  E. v  e.  B  b  =  ( v  i^i 
A ) ) ) )
4 reeanv 3029 . . . . . 6  |-  ( E. u  e.  B  E. v  e.  B  (
a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  <->  ( E. u  e.  B  a  =  ( u  i^i 
A )  /\  E. v  e.  B  b  =  ( v  i^i 
A ) ) )
53, 4syl6bbr 263 . . . . 5  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  <->  E. u  e.  B  E. v  e.  B  ( a  =  ( u  i^i 
A )  /\  b  =  ( v  i^i 
A ) ) ) )
6 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  B  e.  TopBases )
7 simplrl 759 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  u  e.  B )
8 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
v  e.  B )
9 inss1 3718 . . . . . . . . . . 11  |-  ( ( u  i^i  v )  i^i  A )  C_  ( u  i^i  v
)
10 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
c  e.  ( ( u  i^i  v )  i^i  A ) )
119, 10sseldi 3502 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  -> 
c  e.  ( u  i^i  v ) )
12 basis2 19259 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  e.  B )  /\  ( v  e.  B  /\  c  e.  (
u  i^i  v )
) )  ->  E. z  e.  B  ( c  e.  z  /\  z  C_  ( u  i^i  v
) ) )
136, 7, 8, 11, 12syl22anc 1229 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  E. z  e.  B  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) )
14 simplll 757 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( B  e.  TopBases  /\  A  e.  _V )
)
1514simpld 459 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  B  e.  TopBases )
1614simprd 463 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  A  e.  _V )
17 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
z  e.  B )
18 elrestr 14687 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  A  e.  _V  /\  z  e.  B )  ->  (
z  i^i  A )  e.  ( Bt  A ) )
1915, 16, 17, 18syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( z  i^i  A
)  e.  ( Bt  A ) )
20 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  z )
21 inss2 3719 . . . . . . . . . . . 12  |-  ( ( u  i^i  v )  i^i  A )  C_  A
22 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  ( ( u  i^i  v )  i^i  A ) )
2321, 22sseldi 3502 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  A )
2420, 23elind 3688 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
c  e.  ( z  i^i  A ) )
25 simprrr 764 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
z  C_  ( u  i^i  v ) )
26 ssrin 3723 . . . . . . . . . . 11  |-  ( z 
C_  ( u  i^i  v )  ->  (
z  i^i  A )  C_  ( ( u  i^i  v )  i^i  A
) )
2725, 26syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  -> 
( z  i^i  A
)  C_  ( (
u  i^i  v )  i^i  A ) )
28 eleq2 2540 . . . . . . . . . . . 12  |-  ( w  =  ( z  i^i 
A )  ->  (
c  e.  w  <->  c  e.  ( z  i^i  A
) ) )
29 sseq1 3525 . . . . . . . . . . . 12  |-  ( w  =  ( z  i^i 
A )  ->  (
w  C_  ( (
u  i^i  v )  i^i  A )  <->  ( z  i^i  A )  C_  (
( u  i^i  v
)  i^i  A )
) )
3028, 29anbi12d 710 . . . . . . . . . . 11  |-  ( w  =  ( z  i^i 
A )  ->  (
( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A ) )  <-> 
( c  e.  ( z  i^i  A )  /\  ( z  i^i 
A )  C_  (
( u  i^i  v
)  i^i  A )
) ) )
3130rspcev 3214 . . . . . . . . . 10  |-  ( ( ( z  i^i  A
)  e.  ( Bt  A )  /\  ( c  e.  ( z  i^i 
A )  /\  (
z  i^i  A )  C_  ( ( u  i^i  v )  i^i  A
) ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3219, 24, 27, 31syl12anc 1226 . . . . . . . . 9  |-  ( ( ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  (
u  e.  B  /\  v  e.  B )
)  /\  c  e.  ( ( u  i^i  v )  i^i  A
) )  /\  (
z  e.  B  /\  ( c  e.  z  /\  z  C_  (
u  i^i  v )
) ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3313, 32rexlimddv 2959 . . . . . . . 8  |-  ( ( ( ( B  e.  TopBases 
/\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B ) )  /\  c  e.  ( (
u  i^i  v )  i^i  A ) )  ->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
3433ralrimiva 2878 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B
) )  ->  A. c  e.  ( ( u  i^i  v )  i^i  A
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) )
35 ineq12 3695 . . . . . . . . 9  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( a  i^i  b
)  =  ( ( u  i^i  A )  i^i  ( v  i^i 
A ) ) )
36 inindir 3716 . . . . . . . . 9  |-  ( ( u  i^i  v )  i^i  A )  =  ( ( u  i^i 
A )  i^i  (
v  i^i  A )
)
3735, 36syl6eqr 2526 . . . . . . . 8  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( a  i^i  b
)  =  ( ( u  i^i  v )  i^i  A ) )
3837sseq2d 3532 . . . . . . . . . 10  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( w  C_  (
a  i^i  b )  <->  w 
C_  ( ( u  i^i  v )  i^i 
A ) ) )
3938anbi2d 703 . . . . . . . . 9  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
4039rexbidv 2973 . . . . . . . 8  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
4137, 40raleqbidv 3072 . . . . . . 7  |-  ( ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  -> 
( A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) )  <->  A. c  e.  ( ( u  i^i  v )  i^i  A
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( ( u  i^i  v )  i^i  A
) ) ) )
4234, 41syl5ibrcom 222 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  A  e.  _V )  /\  ( u  e.  B  /\  v  e.  B
) )  ->  (
( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  ->  A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4342rexlimdvva 2962 . . . . 5  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  ( E. u  e.  B  E. v  e.  B  ( a  =  ( u  i^i  A )  /\  b  =  ( v  i^i  A ) )  ->  A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
445, 43sylbid 215 . . . 4  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  (
( a  e.  ( Bt  A )  /\  b  e.  ( Bt  A ) )  ->  A. c  e.  (
a  i^i  b ) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4544ralrimivv 2884 . . 3  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) )
46 ovex 6310 . . . 4  |-  ( Bt  A )  e.  _V
47 isbasis2g 19256 . . . 4  |-  ( ( Bt  A )  e.  _V  ->  ( ( Bt  A )  e.  TopBases 
<-> 
A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) ) )
4846, 47ax-mp 5 . . 3  |-  ( ( Bt  A )  e.  TopBases  <->  A. a  e.  ( Bt  A ) A. b  e.  ( Bt  A ) A. c  e.  ( a  i^i  b
) E. w  e.  ( Bt  A ) ( c  e.  w  /\  w  C_  ( a  i^i  b
) ) )
4945, 48sylibr 212 . 2  |-  ( ( B  e.  TopBases  /\  A  e.  _V )  ->  ( Bt  A )  e.  TopBases )
50 relxp 5110 . . . . . 6  |-  Rel  ( _V  X.  _V )
51 restfn 14683 . . . . . . . 8  |-t  Fn  ( _V  X.  _V )
52 fndm 5680 . . . . . . . 8  |-  (t  Fn  ( _V  X.  _V )  ->  domt  =  ( _V  X.  _V ) )
5351, 52ax-mp 5 . . . . . . 7  |-  domt  =  ( _V  X.  _V )
5453releqi 5086 . . . . . 6  |-  ( Rel 
domt  <->  Rel  ( _V  X.  _V ) )
5550, 54mpbir 209 . . . . 5  |-  Rel  domt
5655ovprc2 6314 . . . 4  |-  ( -.  A  e.  _V  ->  ( Bt  A )  =  (/) )
5756adantl 466 . . 3  |-  ( ( B  e.  TopBases  /\  -.  A  e.  _V )  ->  ( Bt  A )  =  (/) )
58 fi0 7881 . . . 4  |-  ( fi
`  (/) )  =  (/)
59 fibas 19285 . . . 4  |-  ( fi
`  (/) )  e.  TopBases
6058, 59eqeltrri 2552 . . 3  |-  (/)  e.  TopBases
6157, 60syl6eqel 2563 . 2  |-  ( ( B  e.  TopBases  /\  -.  A  e.  _V )  ->  ( Bt  A )  e.  TopBases )
6249, 61pm2.61dan 789 1  |-  ( B  e.  TopBases  ->  ( Bt  A )  e.  TopBases )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785    X. cxp 4997   dom cdm 4999   Rel wrel 5004    Fn wfn 5583   ` cfv 5588  (class class class)co 6285   ficfi 7871   ↾t crest 14679   TopBasesctb 19205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-oadd 7135  df-er 7312  df-en 7518  df-fin 7521  df-fi 7872  df-rest 14681  df-bases 19208
This theorem is referenced by:  resttop  19467  2ndcrest  19761
  Copyright terms: Public domain W3C validator