MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressval2 Structured version   Unicode version

Theorem ressval2 14561
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )

Proof of Theorem ressval2
StepHypRef Expression
1 ressbas.r . . . 4  |-  R  =  ( Ws  A )
2 ressbas.b . . . 4  |-  B  =  ( Base `  W
)
31, 2ressval 14559 . . 3  |-  ( ( W  e.  X  /\  A  e.  Y )  ->  R  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
4 iffalse 3954 . . 3  |-  ( -.  B  C_  A  ->  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
53, 4sylan9eqr 2530 . 2  |-  ( ( -.  B  C_  A  /\  ( W  e.  X  /\  A  e.  Y
) )  ->  R  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )
653impb 1192 1  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    i^i cin 3480    C_ wss 3481   ifcif 3945   <.cop 4039   ` cfv 5594  (class class class)co 6295   ndxcnx 14504   sSet csts 14505   Basecbs 14507   ↾s cress 14508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-ress 14514
This theorem is referenced by:  ressbas  14562  resslem  14565  ressinbas  14568  ressress  14569  rescabs  15080  mgpress  17024
  Copyright terms: Public domain W3C validator