MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppss Structured version   Unicode version

Theorem ressuppss 6707
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppss  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( F  |`  B ) supp  Z )  C_  ( F supp  Z ) )

Proof of Theorem ressuppss
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 elin 3536 . . . . . . . . 9  |-  ( b  e.  ( B  i^i  dom 
F )  <->  ( b  e.  B  /\  b  e.  dom  F ) )
21simprbi 461 . . . . . . . 8  |-  ( b  e.  ( B  i^i  dom 
F )  ->  b  e.  dom  F )
3 dmres 5128 . . . . . . . 8  |-  dom  ( F  |`  B )  =  ( B  i^i  dom  F )
42, 3eleq2s 2533 . . . . . . 7  |-  ( b  e.  dom  ( F  |`  B )  ->  b  e.  dom  F )
54ad2antrl 722 . . . . . 6  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
b  e.  dom  F
)
6 snssi 4014 . . . . . . . . . . . 12  |-  ( b  e.  B  ->  { b }  C_  B )
7 resima2 5140 . . . . . . . . . . . 12  |-  ( { b }  C_  B  ->  ( ( F  |`  B ) " {
b } )  =  ( F " {
b } ) )
86, 7syl 16 . . . . . . . . . . 11  |-  ( b  e.  B  ->  (
( F  |`  B )
" { b } )  =  ( F
" { b } ) )
98neeq1d 2619 . . . . . . . . . 10  |-  ( b  e.  B  ->  (
( ( F  |`  B ) " {
b } )  =/= 
{ Z }  <->  ( F " { b } )  =/=  { Z }
) )
109biimpd 207 . . . . . . . . 9  |-  ( b  e.  B  ->  (
( ( F  |`  B ) " {
b } )  =/= 
{ Z }  ->  ( F " { b } )  =/=  { Z } ) )
1110adantld 464 . . . . . . . 8  |-  ( b  e.  B  ->  (
( b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } )  ->  ( F " { b } )  =/=  { Z }
) )
1211adantld 464 . . . . . . 7  |-  ( b  e.  B  ->  (
( ( F  e.  V  /\  Z  e.  W )  /\  (
b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } ) )  ->  ( F " { b } )  =/=  { Z }
) )
13 pm2.24 109 . . . . . . . . . . . 12  |-  ( b  e.  B  ->  ( -.  b  e.  B  ->  ( F " {
b } )  =/= 
{ Z } ) )
1413adantr 462 . . . . . . . . . . 11  |-  ( ( b  e.  B  /\  b  e.  dom  F )  ->  ( -.  b  e.  B  ->  ( F
" { b } )  =/=  { Z } ) )
151, 14sylbi 195 . . . . . . . . . 10  |-  ( b  e.  ( B  i^i  dom 
F )  ->  ( -.  b  e.  B  ->  ( F " {
b } )  =/= 
{ Z } ) )
1615, 3eleq2s 2533 . . . . . . . . 9  |-  ( b  e.  dom  ( F  |`  B )  ->  ( -.  b  e.  B  ->  ( F " {
b } )  =/= 
{ Z } ) )
1716ad2antrl 722 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
( -.  b  e.  B  ->  ( F " { b } )  =/=  { Z }
) )
1817com12 31 . . . . . . 7  |-  ( -.  b  e.  B  -> 
( ( ( F  e.  V  /\  Z  e.  W )  /\  (
b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } ) )  ->  ( F " { b } )  =/=  { Z }
) )
1912, 18pm2.61i 164 . . . . . 6  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
( F " {
b } )  =/= 
{ Z } )
205, 19jca 529 . . . . 5  |-  ( ( ( F  e.  V  /\  Z  e.  W
)  /\  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) )  -> 
( b  e.  dom  F  /\  ( F " { b } )  =/=  { Z }
) )
2120ex 434 . . . 4  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( b  e. 
dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } )  ->  (
b  e.  dom  F  /\  ( F " {
b } )  =/= 
{ Z } ) ) )
2221ss2abdv 3422 . . 3  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  { b  |  ( b  e.  dom  ( F  |`  B )  /\  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } ) }  C_  { b  |  ( b  e. 
dom  F  /\  ( F " { b } )  =/=  { Z } ) } )
23 df-rab 2722 . . 3  |-  { b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B )
" { b } )  =/=  { Z } }  =  {
b  |  ( b  e.  dom  ( F  |`  B )  /\  (
( F  |`  B )
" { b } )  =/=  { Z } ) }
24 df-rab 2722 . . 3  |-  { b  e.  dom  F  | 
( F " {
b } )  =/= 
{ Z } }  =  { b  |  ( b  e.  dom  F  /\  ( F " {
b } )  =/= 
{ Z } ) }
2522, 23, 243sstr4g 3394 . 2  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  { b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } }  C_ 
{ b  e.  dom  F  |  ( F " { b } )  =/=  { Z } } )
26 resexg 5146 . . 3  |-  ( F  e.  V  ->  ( F  |`  B )  e. 
_V )
27 suppval 6691 . . 3  |-  ( ( ( F  |`  B )  e.  _V  /\  Z  e.  W )  ->  (
( F  |`  B ) supp 
Z )  =  {
b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } }
)
2826, 27sylan 468 . 2  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( F  |`  B ) supp  Z )  =  { b  e.  dom  ( F  |`  B )  |  ( ( F  |`  B ) " {
b } )  =/= 
{ Z } }
)
29 suppval 6691 . 2  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( F supp  Z )  =  { b  e. 
dom  F  |  ( F " { b } )  =/=  { Z } } )
3025, 28, 293sstr4d 3396 1  |-  ( ( F  e.  V  /\  Z  e.  W )  ->  ( ( F  |`  B ) supp  Z )  C_  ( F supp  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427    =/= wne 2604   {crab 2717   _Vcvv 2970    i^i cin 3324    C_ wss 3325   {csn 3874   dom cdm 4836    |` cres 4838   "cima 4839  (class class class)co 6090   supp csupp 6689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-supp 6690
This theorem is referenced by:  fsuppres  7641  gsumzres  16381  gsumzadd  16402  gsum2dlem2  16452  tsmsres  19677
  Copyright terms: Public domain W3C validator