MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressress Structured version   Unicode version

Theorem ressress 14240
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressress  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )

Proof of Theorem ressress
StepHypRef Expression
1 simplr 754 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  -.  ( Base `  W
)  C_  A )
2 simpr1 994 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  W  e.  _V )
3 simpr2 995 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  A  e.  X )
4 eqid 2443 . . . . . . . . . 10  |-  ( Ws  A )  =  ( Ws  A )
5 eqid 2443 . . . . . . . . . 10  |-  ( Base `  W )  =  (
Base `  W )
64, 5ressval2 14232 . . . . . . . . 9  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
71, 2, 3, 6syl3anc 1218 . . . . . . . 8  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
8 inass 3565 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( A  i^i  ( B  i^i  ( Base `  W
) ) )
9 in12 3566 . . . . . . . . . . 11  |-  ( A  i^i  ( B  i^i  ( Base `  W )
) )  =  ( B  i^i  ( A  i^i  ( Base `  W
) ) )
108, 9eqtri 2463 . . . . . . . . . 10  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( B  i^i  ( A  i^i  ( Base `  W
) ) )
114, 5ressbas 14233 . . . . . . . . . . . 12  |-  ( A  e.  X  ->  ( A  i^i  ( Base `  W
) )  =  (
Base `  ( Ws  A
) ) )
123, 11syl 16 . . . . . . . . . . 11  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( A  i^i  ( Base `  W ) )  =  ( Base `  ( Ws  A ) ) )
1312ineq2d 3557 . . . . . . . . . 10  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( B  i^i  ( A  i^i  ( Base `  W
) ) )  =  ( B  i^i  ( Base `  ( Ws  A ) ) ) )
1410, 13syl5req 2488 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( B  i^i  ( Base `  ( Ws  A ) ) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
1514opeq2d 4071 . . . . . . . 8  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) >.
)
167, 15oveq12d 6114 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  (
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
17 fvex 5706 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
1817inex2 4439 . . . . . . . 8  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  e.  _V
19 setsabs 14208 . . . . . . . 8  |-  ( ( W  e.  _V  /\  ( ( A  i^i  B )  i^i  ( Base `  W ) )  e. 
_V )  ->  (
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
) )
202, 18, 19sylancl 662 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) >.
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
2116, 20eqtrd 2475 . . . . . 6  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
22 simpll 753 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  -.  ( Base `  ( Ws  A ) )  C_  B )
23 ovex 6121 . . . . . . . 8  |-  ( Ws  A )  e.  _V
2423a1i 11 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( Ws  A )  e.  _V )
25 simpr3 996 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  B  e.  Y )
26 eqid 2443 . . . . . . . 8  |-  ( ( Ws  A )s  B )  =  ( ( Ws  A )s  B )
27 eqid 2443 . . . . . . . 8  |-  ( Base `  ( Ws  A ) )  =  ( Base `  ( Ws  A ) )
2826, 27ressval2 14232 . . . . . . 7  |-  ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  ( Ws  A )  e.  _V  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
2922, 24, 25, 28syl3anc 1218 . . . . . 6  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
30 inss1 3575 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
31 sstr 3369 . . . . . . . . 9  |-  ( ( ( Base `  W
)  C_  ( A  i^i  B )  /\  ( A  i^i  B )  C_  A )  ->  ( Base `  W )  C_  A )
3230, 31mpan2 671 . . . . . . . 8  |-  ( (
Base `  W )  C_  ( A  i^i  B
)  ->  ( Base `  W )  C_  A
)
331, 32nsyl 121 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  -.  ( Base `  W
)  C_  ( A  i^i  B ) )
34 inex1g 4440 . . . . . . . 8  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
353, 34syl 16 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( A  i^i  B
)  e.  _V )
36 eqid 2443 . . . . . . . 8  |-  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( A  i^i  B ) )
3736, 5ressval2 14232 . . . . . . 7  |-  ( ( -.  ( Base `  W
)  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
3833, 2, 35, 37syl3anc 1218 . . . . . 6  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
3921, 29, 383eqtr4d 2485 . . . . 5  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
4039exp31 604 . . . 4  |-  ( -.  ( Base `  ( Ws  A ) )  C_  B  ->  ( -.  ( Base `  W )  C_  A  ->  ( ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) ) )
4126, 27ressid2 14231 . . . . . . . 8  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( Ws  A )  e.  _V  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( Ws  A ) )
4223, 41mp3an2 1302 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  A ) )
43423ad2antr3 1155 . . . . . 6  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  (
( Ws  A )s  B )  =  ( Ws  A ) )
44 in32 3567 . . . . . . . . 9  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( ( A  i^i  ( Base `  W ) )  i^i  B )
45 simpr2 995 . . . . . . . . . . . 12  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  A  e.  X )
4645, 11syl 16 . . . . . . . . . . 11  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( A  i^i  ( Base `  W
) )  =  (
Base `  ( Ws  A
) ) )
47 simpl 457 . . . . . . . . . . 11  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Base `  ( Ws  A ) )  C_  B )
4846, 47eqsstrd 3395 . . . . . . . . . 10  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( A  i^i  ( Base `  W
) )  C_  B
)
49 df-ss 3347 . . . . . . . . . 10  |-  ( ( A  i^i  ( Base `  W ) )  C_  B 
<->  ( ( A  i^i  ( Base `  W )
)  i^i  B )  =  ( A  i^i  ( Base `  W )
) )
5048, 49sylib 196 . . . . . . . . 9  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  (
( A  i^i  ( Base `  W ) )  i^i  B )  =  ( A  i^i  ( Base `  W ) ) )
5144, 50syl5req 2488 . . . . . . . 8  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( A  i^i  ( Base `  W
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
5251oveq2d 6112 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  ( A  i^i  ( Base `  W ) ) )  =  ( Ws  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) ) )
535ressinbas 14239 . . . . . . . 8  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  ( Base `  W ) ) ) )
5445, 53syl 16 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  ( Base `  W ) ) ) )
555ressinbas 14239 . . . . . . . 8  |-  ( ( A  i^i  B )  e.  _V  ->  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) ) )
5645, 34, 553syl 20 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) ) )
5752, 54, 563eqtr4d 2485 . . . . . 6  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
5843, 57eqtrd 2475 . . . . 5  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  (
( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) )
5958ex 434 . . . 4  |-  ( (
Base `  ( Ws  A
) )  C_  B  ->  ( ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
604, 5ressid2 14231 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  X )  ->  ( Ws  A )  =  W )
61603adant3r3 1198 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  A
)  =  W )
6261oveq1d 6111 . . . . . 6  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( ( Ws  A )s  B )  =  ( Ws  B ) )
63 inss2 3576 . . . . . . . . . . 11  |-  ( B  i^i  ( Base `  W
) )  C_  ( Base `  W )
64 simpl 457 . . . . . . . . . . 11  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Base `  W )  C_  A
)
6563, 64syl5ss 3372 . . . . . . . . . 10  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( B  i^i  ( Base `  W
) )  C_  A
)
66 sseqin2 3574 . . . . . . . . . 10  |-  ( ( B  i^i  ( Base `  W ) )  C_  A 
<->  ( A  i^i  ( B  i^i  ( Base `  W
) ) )  =  ( B  i^i  ( Base `  W ) ) )
6765, 66sylib 196 . . . . . . . . 9  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( A  i^i  ( B  i^i  ( Base `  W ) ) )  =  ( B  i^i  ( Base `  W
) ) )
688, 67syl5req 2488 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( B  i^i  ( Base `  W
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
6968oveq2d 6112 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  ( B  i^i  ( Base `  W
) ) )  =  ( Ws  ( ( A  i^i  B )  i^i  ( Base `  W
) ) ) )
70 simpr3 996 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  B  e.  Y )
715ressinbas 14239 . . . . . . . 8  |-  ( B  e.  Y  ->  ( Ws  B )  =  ( Ws  ( B  i^i  ( Base `  W ) ) ) )
7270, 71syl 16 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  B
)  =  ( Ws  ( B  i^i  ( Base `  W ) ) ) )
73 simpr2 995 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  A  e.  X )
7473, 34, 553syl 20 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( ( A  i^i  B )  i^i  ( Base `  W
) ) ) )
7569, 72, 743eqtr4d 2485 . . . . . 6  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  B
)  =  ( Ws  ( A  i^i  B ) ) )
7662, 75eqtrd 2475 . . . . 5  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) )
7776ex 434 . . . 4  |-  ( (
Base `  W )  C_  A  ->  ( ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
7840, 59, 77pm2.61ii 165 . . 3  |-  ( ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
79783expib 1190 . 2  |-  ( W  e.  _V  ->  (
( A  e.  X  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
80 ress0 14237 . . . 4  |-  ( (/)s  B )  =  (/)
81 reldmress 14229 . . . . . 6  |-  Rel  doms
8281ovprc1 6124 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
8382oveq1d 6111 . . . 4  |-  ( -.  W  e.  _V  ->  ( ( Ws  A )s  B )  =  (
(/)s  B ) )
8481ovprc1 6124 . . . 4  |-  ( -.  W  e.  _V  ->  ( Ws  ( A  i^i  B
) )  =  (/) )
8580, 83, 843eqtr4a 2501 . . 3  |-  ( -.  W  e.  _V  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) )
8685a1d 25 . 2  |-  ( -.  W  e.  _V  ->  ( ( A  e.  X  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
8779, 86pm2.61i 164 1  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2977    i^i cin 3332    C_ wss 3333   (/)c0 3642   <.cop 3888   ` cfv 5423  (class class class)co 6096   ndxcnx 14176   sSet csts 14177   Basecbs 14179   ↾s cress 14180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-i2m1 9355  ax-1ne0 9356  ax-rrecex 9359  ax-cnre 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-nn 10328  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186
This theorem is referenced by:  ressabs  14241  xrge00  26152  xrge0slmod  26317  esumpfinvallem  26528  lmhmlnmsplit  29445
  Copyright terms: Public domain W3C validator