MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressress Structured version   Unicode version

Theorem ressress 14231
Description: Restriction composition law. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Proof shortened by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
ressress  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )

Proof of Theorem ressress
StepHypRef Expression
1 simplr 749 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  -.  ( Base `  W
)  C_  A )
2 simpr1 989 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  W  e.  _V )
3 simpr2 990 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  A  e.  X )
4 eqid 2441 . . . . . . . . . 10  |-  ( Ws  A )  =  ( Ws  A )
5 eqid 2441 . . . . . . . . . 10  |-  ( Base `  W )  =  (
Base `  W )
64, 5ressval2 14223 . . . . . . . . 9  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  X )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
71, 2, 3, 6syl3anc 1213 . . . . . . . 8  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
8 inass 3557 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( A  i^i  ( B  i^i  ( Base `  W
) ) )
9 in12 3558 . . . . . . . . . . 11  |-  ( A  i^i  ( B  i^i  ( Base `  W )
) )  =  ( B  i^i  ( A  i^i  ( Base `  W
) ) )
108, 9eqtri 2461 . . . . . . . . . 10  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( B  i^i  ( A  i^i  ( Base `  W
) ) )
114, 5ressbas 14224 . . . . . . . . . . . 12  |-  ( A  e.  X  ->  ( A  i^i  ( Base `  W
) )  =  (
Base `  ( Ws  A
) ) )
123, 11syl 16 . . . . . . . . . . 11  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( A  i^i  ( Base `  W ) )  =  ( Base `  ( Ws  A ) ) )
1312ineq2d 3549 . . . . . . . . . 10  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( B  i^i  ( A  i^i  ( Base `  W
) ) )  =  ( B  i^i  ( Base `  ( Ws  A ) ) ) )
1410, 13syl5req 2486 . . . . . . . . 9  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( B  i^i  ( Base `  ( Ws  A ) ) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
1514opeq2d 4063 . . . . . . . 8  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) >.
)
167, 15oveq12d 6108 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  (
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
17 fvex 5698 . . . . . . . . 9  |-  ( Base `  W )  e.  _V
1817inex2 4431 . . . . . . . 8  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  e.  _V
19 setsabs 14199 . . . . . . . 8  |-  ( ( W  e.  _V  /\  ( ( A  i^i  B )  i^i  ( Base `  W ) )  e. 
_V )  ->  (
( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W ) ) >.
) )
202, 18, 19sylancl 657 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) >.
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
2116, 20eqtrd 2473 . . . . . 6  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
22 simpll 748 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  -.  ( Base `  ( Ws  A ) )  C_  B )
23 ovex 6115 . . . . . . . 8  |-  ( Ws  A )  e.  _V
2423a1i 11 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( Ws  A )  e.  _V )
25 simpr3 991 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  B  e.  Y )
26 eqid 2441 . . . . . . . 8  |-  ( ( Ws  A )s  B )  =  ( ( Ws  A )s  B )
27 eqid 2441 . . . . . . . 8  |-  ( Base `  ( Ws  A ) )  =  ( Base `  ( Ws  A ) )
2826, 27ressval2 14223 . . . . . . 7  |-  ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  ( Ws  A )  e.  _V  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
2922, 24, 25, 28syl3anc 1213 . . . . . 6  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A )s  B )  =  ( ( Ws  A ) sSet  <. ( Base `  ndx ) ,  ( B  i^i  ( Base `  ( Ws  A ) ) ) >. )
)
30 inss1 3567 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
31 sstr 3361 . . . . . . . . 9  |-  ( ( ( Base `  W
)  C_  ( A  i^i  B )  /\  ( A  i^i  B )  C_  A )  ->  ( Base `  W )  C_  A )
3230, 31mpan2 666 . . . . . . . 8  |-  ( (
Base `  W )  C_  ( A  i^i  B
)  ->  ( Base `  W )  C_  A
)
331, 32nsyl 121 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  ->  -.  ( Base `  W
)  C_  ( A  i^i  B ) )
34 inex1g 4432 . . . . . . . 8  |-  ( A  e.  X  ->  ( A  i^i  B )  e. 
_V )
353, 34syl 16 . . . . . . 7  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( A  i^i  B
)  e.  _V )
36 eqid 2441 . . . . . . . 8  |-  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( A  i^i  B ) )
3736, 5ressval2 14223 . . . . . . 7  |-  ( ( -.  ( Base `  W
)  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
3833, 2, 35, 37syl3anc 1213 . . . . . 6  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  ( Base `  W
) ) >. )
)
3921, 29, 383eqtr4d 2483 . . . . 5  |-  ( ( ( -.  ( Base `  ( Ws  A ) )  C_  B  /\  -.  ( Base `  W )  C_  A
)  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y ) )  -> 
( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
4039exp31 601 . . . 4  |-  ( -.  ( Base `  ( Ws  A ) )  C_  B  ->  ( -.  ( Base `  W )  C_  A  ->  ( ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) ) )
4126, 27ressid2 14222 . . . . . . . 8  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( Ws  A )  e.  _V  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( Ws  A ) )
4223, 41mp3an2 1297 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  A ) )
43423ad2antr3 1150 . . . . . 6  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  (
( Ws  A )s  B )  =  ( Ws  A ) )
44 in32 3559 . . . . . . . . 9  |-  ( ( A  i^i  B )  i^i  ( Base `  W
) )  =  ( ( A  i^i  ( Base `  W ) )  i^i  B )
45 simpr2 990 . . . . . . . . . . . 12  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  A  e.  X )
4645, 11syl 16 . . . . . . . . . . 11  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( A  i^i  ( Base `  W
) )  =  (
Base `  ( Ws  A
) ) )
47 simpl 454 . . . . . . . . . . 11  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Base `  ( Ws  A ) )  C_  B )
4846, 47eqsstrd 3387 . . . . . . . . . 10  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( A  i^i  ( Base `  W
) )  C_  B
)
49 df-ss 3339 . . . . . . . . . 10  |-  ( ( A  i^i  ( Base `  W ) )  C_  B 
<->  ( ( A  i^i  ( Base `  W )
)  i^i  B )  =  ( A  i^i  ( Base `  W )
) )
5048, 49sylib 196 . . . . . . . . 9  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  (
( A  i^i  ( Base `  W ) )  i^i  B )  =  ( A  i^i  ( Base `  W ) ) )
5144, 50syl5req 2486 . . . . . . . 8  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( A  i^i  ( Base `  W
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
5251oveq2d 6106 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  ( A  i^i  ( Base `  W ) ) )  =  ( Ws  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) ) )
535ressinbas 14230 . . . . . . . 8  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  ( Base `  W ) ) ) )
5445, 53syl 16 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  ( Base `  W ) ) ) )
555ressinbas 14230 . . . . . . . 8  |-  ( ( A  i^i  B )  e.  _V  ->  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) ) )
5645, 34, 553syl 20 . . . . . . 7  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) ) )
5752, 54, 563eqtr4d 2483 . . . . . 6  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
5843, 57eqtrd 2473 . . . . 5  |-  ( ( ( Base `  ( Ws  A ) )  C_  B  /\  ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
) )  ->  (
( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) )
5958ex 434 . . . 4  |-  ( (
Base `  ( Ws  A
) )  C_  B  ->  ( ( W  e. 
_V  /\  A  e.  X  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
604, 5ressid2 14222 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  X )  ->  ( Ws  A )  =  W )
61603adant3r3 1193 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  A
)  =  W )
6261oveq1d 6105 . . . . . 6  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( ( Ws  A )s  B )  =  ( Ws  B ) )
63 inss2 3568 . . . . . . . . . . 11  |-  ( B  i^i  ( Base `  W
) )  C_  ( Base `  W )
64 simpl 454 . . . . . . . . . . 11  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Base `  W )  C_  A
)
6563, 64syl5ss 3364 . . . . . . . . . 10  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( B  i^i  ( Base `  W
) )  C_  A
)
66 sseqin2 3566 . . . . . . . . . 10  |-  ( ( B  i^i  ( Base `  W ) )  C_  A 
<->  ( A  i^i  ( B  i^i  ( Base `  W
) ) )  =  ( B  i^i  ( Base `  W ) ) )
6765, 66sylib 196 . . . . . . . . 9  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( A  i^i  ( B  i^i  ( Base `  W ) ) )  =  ( B  i^i  ( Base `  W
) ) )
688, 67syl5req 2486 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( B  i^i  ( Base `  W
) )  =  ( ( A  i^i  B
)  i^i  ( Base `  W ) ) )
6968oveq2d 6106 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  ( B  i^i  ( Base `  W
) ) )  =  ( Ws  ( ( A  i^i  B )  i^i  ( Base `  W
) ) ) )
70 simpr3 991 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  B  e.  Y )
715ressinbas 14230 . . . . . . . 8  |-  ( B  e.  Y  ->  ( Ws  B )  =  ( Ws  ( B  i^i  ( Base `  W ) ) ) )
7270, 71syl 16 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  B
)  =  ( Ws  ( B  i^i  ( Base `  W ) ) ) )
73 simpr2 990 . . . . . . . 8  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  A  e.  X )
7473, 34, 553syl 20 . . . . . . 7  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( ( A  i^i  B )  i^i  ( Base `  W
) ) ) )
7569, 72, 743eqtr4d 2483 . . . . . 6  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( Ws  B
)  =  ( Ws  ( A  i^i  B ) ) )
7662, 75eqtrd 2473 . . . . 5  |-  ( ( ( Base `  W
)  C_  A  /\  ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) )
7776ex 434 . . . 4  |-  ( (
Base `  W )  C_  A  ->  ( ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )  ->  (
( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
7840, 59, 77pm2.61ii 165 . . 3  |-  ( ( W  e.  _V  /\  A  e.  X  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
79783expib 1185 . 2  |-  ( W  e.  _V  ->  (
( A  e.  X  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
80 ress0 14228 . . . 4  |-  ( (/)s  B )  =  (/)
81 reldmress 14220 . . . . . 6  |-  Rel  doms
8281ovprc1 6118 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
8382oveq1d 6105 . . . 4  |-  ( -.  W  e.  _V  ->  ( ( Ws  A )s  B )  =  (
(/)s  B ) )
8481ovprc1 6118 . . . 4  |-  ( -.  W  e.  _V  ->  ( Ws  ( A  i^i  B
) )  =  (/) )
8580, 83, 843eqtr4a 2499 . . 3  |-  ( -.  W  e.  _V  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) )
8685a1d 25 . 2  |-  ( -.  W  e.  _V  ->  ( ( A  e.  X  /\  B  e.  Y
)  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B
) ) ) )
8779, 86pm2.61i 164 1  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( ( Ws  A )s  B )  =  ( Ws  ( A  i^i  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970    i^i cin 3324    C_ wss 3325   (/)c0 3634   <.cop 3880   ` cfv 5415  (class class class)co 6090   ndxcnx 14167   sSet csts 14168   Basecbs 14170   ↾s cress 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-i2m1 9346  ax-1ne0 9347  ax-rrecex 9350  ax-cnre 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-nn 10319  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177
This theorem is referenced by:  ressabs  14232  xrge00  26080  xrge0slmod  26248  esumpfinvallem  26459  lmhmlnmsplit  29365
  Copyright terms: Public domain W3C validator