MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Unicode version

Theorem resspsrmul 18576
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s  |-  S  =  ( I mPwSer  R )
resspsr.h  |-  H  =  ( Rs  T )
resspsr.u  |-  U  =  ( I mPwSer  H )
resspsr.b  |-  B  =  ( Base `  U
)
resspsr.p  |-  P  =  ( Ss  B )
resspsr.2  |-  ( ph  ->  T  e.  (SubRing `  R
) )
Assertion
Ref Expression
resspsrmul  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( X ( .r `  P
) Y ) )

Proof of Theorem resspsrmul
Dummy variables  x  k  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmpsr 18520 . . . . . . . . . 10  |-  Rel  dom mPwSer
2 resspsr.u . . . . . . . . . 10  |-  U  =  ( I mPwSer  H )
3 resspsr.b . . . . . . . . . 10  |-  B  =  ( Base `  U
)
41, 2, 3elbasov 15134 . . . . . . . . 9  |-  ( X  e.  B  ->  (
I  e.  _V  /\  H  e.  _V )
)
54ad2antrl 732 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( I  e.  _V  /\  H  e.  _V )
)
65simpld 460 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  I  e.  _V )
7 eqid 2429 . . . . . . . 8  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
87psrbaglefi 18531 . . . . . . 7  |-  ( ( I  e.  _V  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  ->  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k }  e.  Fin )
96, 8sylan 473 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  { y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k }  e.  Fin )
10 resspsr.2 . . . . . . . . 9  |-  ( ph  ->  T  e.  (SubRing `  R
) )
11 subrgsubg 17949 . . . . . . . . 9  |-  ( T  e.  (SubRing `  R
)  ->  T  e.  (SubGrp `  R ) )
1210, 11syl 17 . . . . . . . 8  |-  ( ph  ->  T  e.  (SubGrp `  R ) )
13 subgsubm 16790 . . . . . . . 8  |-  ( T  e.  (SubGrp `  R
)  ->  T  e.  (SubMnd `  R ) )
1412, 13syl 17 . . . . . . 7  |-  ( ph  ->  T  e.  (SubMnd `  R ) )
1514ad2antrr 730 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  T  e.  (SubMnd `  R ) )
1610ad3antrrr 734 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  T  e.  (SubRing `  R ) )
17 eqid 2429 . . . . . . . . . . . 12  |-  ( Base `  H )  =  (
Base `  H )
18 simprl 762 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
192, 17, 7, 3, 18psrelbas 18538 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X : { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } --> ( Base `  H ) )
2019adantr 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  X : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  H
) )
21 elrabi 3232 . . . . . . . . . 10  |-  ( x  e.  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k }  ->  x  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
22 ffvelrn 6035 . . . . . . . . . 10  |-  ( ( X : { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  H )  /\  x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  ->  ( X `  x )  e.  ( Base `  H
) )
2320, 21, 22syl2an 479 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( X `  x )  e.  (
Base `  H )
)
24 resspsr.h . . . . . . . . . . 11  |-  H  =  ( Rs  T )
2524subrgbas 17952 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  T  =  ( Base `  H )
)
2616, 25syl 17 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  T  =  (
Base `  H )
)
2723, 26eleqtrrd 2520 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( X `  x )  e.  T
)
28 simprr 764 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
292, 17, 7, 3, 28psrelbas 18538 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y : { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } --> ( Base `  H ) )
3029ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  Y : {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  H
) )
31 ssrab2 3552 . . . . . . . . . . 11  |-  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  C_  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }
326ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  I  e.  _V )
33 simplr 760 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
34 simpr 462 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k } )
35 eqid 2429 . . . . . . . . . . . . 13  |-  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  =  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }
367, 35psrbagconcl 18532 . . . . . . . . . . . 12  |-  ( ( I  e.  _V  /\  k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  /\  x  e.  { y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k } )  ->  ( k  oF  -  x
)  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k } )
3732, 33, 34, 36syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( k  oF  -  x )  e.  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k } )
3831, 37sseldi 3468 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( k  oF  -  x )  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )
3930, 38ffvelrnd 6038 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( Y `  ( k  oF  -  x ) )  e.  ( Base `  H
) )
4039, 26eleqtrrd 2520 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( Y `  ( k  oF  -  x ) )  e.  T )
41 eqid 2429 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
4241subrgmcl 17955 . . . . . . . 8  |-  ( ( T  e.  (SubRing `  R
)  /\  ( X `  x )  e.  T  /\  ( Y `  (
k  oF  -  x ) )  e.  T )  ->  (
( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) )  e.  T
)
4316, 27, 40, 42syl3anc 1264 . . . . . . 7  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) )  e.  T )
44 eqid 2429 . . . . . . 7  |-  ( x  e.  { y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |  y  oR  <_  k } 
|->  ( ( X `  x ) ( .r
`  R ) ( Y `  ( k  oF  -  x
) ) ) )  =  ( x  e. 
{ y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k }  |->  ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) )
4543, 44fmptd 6061 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k }  |->  ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) ) : { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } --> T )
469, 15, 45, 24gsumsubm 16571 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( R  gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) )
4724, 41ressmulr 15209 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  ( .r `  R )  =  ( .r `  H ) )
4810, 47syl 17 . . . . . . . . 9  |-  ( ph  ->  ( .r `  R
)  =  ( .r
`  H ) )
4948ad3antrrr 734 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( .r `  R )  =  ( .r `  H ) )
5049oveqd 6322 . . . . . . 7  |-  ( ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B
) )  /\  k  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  /\  x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k } )  ->  ( ( X `
 x ) ( .r `  R ) ( Y `  (
k  oF  -  x ) ) )  =  ( ( X `
 x ) ( .r `  H ) ( Y `  (
k  oF  -  x ) ) ) )
5150mpteq2dva 4512 . . . . . 6  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( x  e.  { y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  |  y  oR  <_  k }  |->  ( ( X `  x
) ( .r `  R ) ( Y `
 ( k  oF  -  x ) ) ) )  =  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) )
5251oveq2d 6321 . . . . 5  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( H  gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) )
5346, 52eqtrd 2470 . . . 4  |-  ( ( ( ph  /\  ( X  e.  B  /\  Y  e.  B )
)  /\  k  e.  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )  ->  ( R  gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) )  =  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) )
5453mpteq2dva 4512 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( k  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  ( R  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) )  =  ( k  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  ( H 
gsumg  ( x  e.  { y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
55 resspsr.s . . . 4  |-  S  =  ( I mPwSer  R )
56 eqid 2429 . . . 4  |-  ( Base `  S )  =  (
Base `  S )
57 eqid 2429 . . . 4  |-  ( .r
`  S )  =  ( .r `  S
)
58 fvex 5891 . . . . . . . 8  |-  ( Base `  R )  e.  _V
5910, 25syl 17 . . . . . . . . 9  |-  ( ph  ->  T  =  ( Base `  H ) )
60 eqid 2429 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
6160subrgss 17944 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  T  C_  ( Base `  R ) )
6210, 61syl 17 . . . . . . . . 9  |-  ( ph  ->  T  C_  ( Base `  R ) )
6359, 62eqsstr3d 3505 . . . . . . . 8  |-  ( ph  ->  ( Base `  H
)  C_  ( Base `  R ) )
64 mapss 7522 . . . . . . . 8  |-  ( ( ( Base `  R
)  e.  _V  /\  ( Base `  H )  C_  ( Base `  R
) )  ->  (
( Base `  H )  ^m  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } )  C_  (
( Base `  R )  ^m  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } ) )
6558, 63, 64sylancr 667 . . . . . . 7  |-  ( ph  ->  ( ( Base `  H
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } ) 
C_  ( ( Base `  R )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
6665adantr 466 . . . . . 6  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( ( Base `  H
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } ) 
C_  ( ( Base `  R )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
672, 17, 7, 3, 6psrbas 18537 . . . . . 6  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  B  =  ( ( Base `  H )  ^m  { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
6855, 60, 7, 56, 6psrbas 18537 . . . . . 6  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( Base `  S )  =  ( ( Base `  R )  ^m  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } ) )
6966, 67, 683sstr4d 3513 . . . . 5  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  B  C_  ( Base `  S
) )
7069, 18sseldd 3471 . . . 4  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X  e.  ( Base `  S ) )
7169, 28sseldd 3471 . . . 4  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  ( Base `  S ) )
7255, 56, 41, 57, 7, 70, 71psrmulfval 18544 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  S ) Y )  =  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( R  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  R
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
73 eqid 2429 . . . 4  |-  ( .r
`  H )  =  ( .r `  H
)
74 eqid 2429 . . . 4  |-  ( .r
`  U )  =  ( .r `  U
)
752, 3, 73, 74, 7, 18, 28psrmulfval 18544 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( k  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  ( H  gsumg  ( x  e.  {
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  | 
y  oR  <_ 
k }  |->  ( ( X `  x ) ( .r `  H
) ( Y `  ( k  oF  -  x ) ) ) ) ) ) )
7654, 72, 753eqtr4rd 2481 . 2  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( X ( .r `  S
) Y ) )
77 fvex 5891 . . . . 5  |-  ( Base `  U )  e.  _V
783, 77eqeltri 2513 . . . 4  |-  B  e. 
_V
79 resspsr.p . . . . 5  |-  P  =  ( Ss  B )
8079, 57ressmulr 15209 . . . 4  |-  ( B  e.  _V  ->  ( .r `  S )  =  ( .r `  P
) )
8178, 80mp1i 13 . . 3  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( .r `  S
)  =  ( .r
`  P ) )
8281oveqd 6322 . 2  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  S ) Y )  =  ( X ( .r `  P
) Y ) )
8376, 82eqtrd 2470 1  |-  ( (
ph  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( .r
`  U ) Y )  =  ( X ( .r `  P
) Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   {crab 2786   _Vcvv 3087    C_ wss 3442   class class class wbr 4426    |-> cmpt 4484   `'ccnv 4853   "cima 4857   -->wf 5597   ` cfv 5601  (class class class)co 6305    oFcof 6543    oRcofr 6544    ^m cmap 7480   Fincfn 7577    <_ cle 9675    - cmin 9859   NNcn 10609   NN0cn0 10869   Basecbs 15084   ↾s cress 15085   .rcmulr 15153    gsumg cgsu 15298  SubMndcsubmnd 16532  SubGrpcsubg 16762  SubRingcsubrg 17939   mPwSer cmps 18510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-ofr 6546  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-pm 7483  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-seq 12211  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-sca 15168  df-vsca 15169  df-tset 15171  df-0g 15299  df-gsum 15300  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-grp 16624  df-minusg 16625  df-subg 16765  df-mgp 17659  df-ring 17717  df-subrg 17941  df-psr 18515
This theorem is referenced by:  subrgpsr  18578  ressmplmul  18617
  Copyright terms: Public domain W3C validator