MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressprdsds Unicode version

Theorem ressprdsds 18354
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
ressprdsds.y  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  R ) ) )
ressprdsds.h  |-  ( ph  ->  H  =  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
ressprdsds.b  |-  B  =  ( Base `  H
)
ressprdsds.d  |-  D  =  ( dist `  Y
)
ressprdsds.e  |-  E  =  ( dist `  H
)
ressprdsds.s  |-  ( ph  ->  S  e.  U )
ressprdsds.t  |-  ( ph  ->  T  e.  V )
ressprdsds.i  |-  ( ph  ->  I  e.  W )
ressprdsds.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  X )
ressprdsds.a  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  Z )
Assertion
Ref Expression
ressprdsds  |-  ( ph  ->  E  =  ( D  |`  ( B  X.  B
) ) )
Distinct variable groups:    x, I    ph, x
Allowed substitution hints:    A( x)    B( x)    D( x)    R( x)    S( x)    T( x)    U( x)    E( x)    H( x)    V( x)    W( x)    X( x)    Y( x)    Z( x)

Proof of Theorem ressprdsds
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 6172 . . . . 5  |-  ( ( f  e.  B  /\  g  e.  B )  ->  ( f ( D  |`  ( B  X.  B
) ) g )  =  ( f D g ) )
21adantl 453 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( D  |`  ( B  X.  B
) ) g )  =  ( f D g ) )
3 ressprdsds.a . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  Z )
4 eqid 2404 . . . . . . . . . . . . . 14  |-  ( Rs  A )  =  ( Rs  A )
5 eqid 2404 . . . . . . . . . . . . . 14  |-  ( dist `  R )  =  (
dist `  R )
64, 5ressds 13596 . . . . . . . . . . . . 13  |-  ( A  e.  Z  ->  ( dist `  R )  =  ( dist `  ( Rs  A ) ) )
73, 6syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ( dist `  R )  =  ( dist `  ( Rs  A ) ) )
87oveqd 6057 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  (
( f `  x
) ( dist `  R
) ( g `  x ) )  =  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )
98mpteq2dva 4255 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
109adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
1110rneqd 5056 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
1211uneq1d 3460 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } )  =  ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )  u.  {
0 } ) )
1312supeq1d 7409 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `
 x ) (
dist `  ( Rs  A
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
14 eqid 2404 . . . . . . 7  |-  ( S
X_s ( x  e.  I  |->  R ) )  =  ( S X_s ( x  e.  I  |->  R ) )
15 eqid 2404 . . . . . . 7  |-  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )
16 ressprdsds.s . . . . . . . 8  |-  ( ph  ->  S  e.  U )
1716adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  U )
18 ressprdsds.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
1918adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  W )
20 ressprdsds.r . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  X )
2120ralrimiva 2749 . . . . . . . 8  |-  ( ph  ->  A. x  e.  I  R  e.  X )
2221adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I  R  e.  X )
23 eqid 2404 . . . . . . . . . . . . . . . 16  |-  ( Base `  R )  =  (
Base `  R )
244, 23ressbasss 13476 . . . . . . . . . . . . . . 15  |-  ( Base `  ( Rs  A ) )  C_  ( Base `  R )
2524a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  ( Rs  A ) )  C_  ( Base `  R ) )
2625ralrimiva 2749 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  I 
( Base `  ( Rs  A
) )  C_  ( Base `  R ) )
27 ss2ixp 7034 . . . . . . . . . . . . 13  |-  ( A. x  e.  I  ( Base `  ( Rs  A ) )  C_  ( Base `  R )  ->  X_ x  e.  I  ( Base `  ( Rs  A ) )  C_  X_ x  e.  I  (
Base `  R )
)
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( Rs  A
) )  C_  X_ x  e.  I  ( Base `  R ) )
29 eqid 2404 . . . . . . . . . . . . 13  |-  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) )  =  ( T X_s (
x  e.  I  |->  ( Rs  A ) ) )
30 eqid 2404 . . . . . . . . . . . . 13  |-  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
31 ressprdsds.t . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  V )
32 ovex 6065 . . . . . . . . . . . . . . 15  |-  ( Rs  A )  e.  _V
3332rgenw 2733 . . . . . . . . . . . . . 14  |-  A. x  e.  I  ( Rs  A
)  e.  _V
3433a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  I 
( Rs  A )  e.  _V )
35 eqid 2404 . . . . . . . . . . . . 13  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
3629, 30, 31, 18, 34, 35prdsbas3 13658 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  X_ x  e.  I  ( Base `  ( Rs  A ) ) )
3714, 15, 16, 18, 21, 23prdsbas3 13658 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  =  X_ x  e.  I 
( Base `  R )
)
3828, 36, 373sstr4d 3351 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  C_  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
39 ressprdsds.b . . . . . . . . . . . 12  |-  B  =  ( Base `  H
)
40 ressprdsds.h . . . . . . . . . . . . 13  |-  ( ph  ->  H  =  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
4140fveq2d 5691 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
4239, 41syl5eq 2448 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
43 ressprdsds.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  R ) ) )
4443fveq2d 5691 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
4538, 42, 443sstr4d 3351 . . . . . . . . . 10  |-  ( ph  ->  B  C_  ( Base `  Y ) )
4645adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  C_  ( Base `  Y
) )
4744adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( Base `  Y )  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
4846, 47sseqtrd 3344 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  C_  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
49 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
5048, 49sseldd 3309 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
51 simprr 734 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
5248, 51sseldd 3309 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
53 eqid 2404 . . . . . . 7  |-  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )
5414, 15, 17, 19, 22, 50, 52, 5, 53prdsdsval2 13661 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g )  =  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
5531adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  T  e.  V )
5633a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( Rs  A )  e.  _V )
5742adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
5849, 57eleqtrd 2480 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
5951, 57eleqtrd 2480 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
60 eqid 2404 . . . . . . 7  |-  ( dist `  ( Rs  A ) )  =  ( dist `  ( Rs  A ) )
61 eqid 2404 . . . . . . 7  |-  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
6229, 30, 55, 19, 56, 58, 59, 60, 61prdsdsval2 13661 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
6313, 54, 623eqtr4d 2446 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g )  =  ( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g ) )
64 ressprdsds.d . . . . . . 7  |-  D  =  ( dist `  Y
)
6543fveq2d 5691 . . . . . . 7  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) )
6664, 65syl5eq 2448 . . . . . 6  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) )
6766proplem3 13871 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g ) )
68 ressprdsds.e . . . . . . 7  |-  E  =  ( dist `  H
)
6940fveq2d 5691 . . . . . . 7  |-  ( ph  ->  ( dist `  H
)  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
7068, 69syl5eq 2448 . . . . . 6  |-  ( ph  ->  E  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
7170proplem3 13871 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f E g )  =  ( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g ) )
7263, 67, 713eqtr4d 2446 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f E g ) )
732, 72eqtr2d 2437 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f E g )  =  ( f ( D  |`  ( B  X.  B ) ) g ) )
7473ralrimivva 2758 . 2  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B ) ) g ) )
75 mptexg 5924 . . . . . 6  |-  ( I  e.  W  ->  (
x  e.  I  |->  ( Rs  A ) )  e. 
_V )
7618, 75syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  ( Rs  A ) )  e. 
_V )
77 eqid 2404 . . . . . . 7  |-  ( x  e.  I  |->  ( Rs  A ) )  =  ( x  e.  I  |->  ( Rs  A ) )
7832, 77dmmpti 5533 . . . . . 6  |-  dom  (
x  e.  I  |->  ( Rs  A ) )  =  I
7978a1i 11 . . . . 5  |-  ( ph  ->  dom  ( x  e.  I  |->  ( Rs  A ) )  =  I )
8029, 31, 76, 30, 79, 61prdsdsfn 13642 . . . 4  |-  ( ph  ->  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  Fn  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) )
8142, 42xpeq12d 4862 . . . . 5  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) )
8270, 81fneq12d 5497 . . . 4  |-  ( ph  ->  ( E  Fn  ( B  X.  B )  <->  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  Fn  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) ) )
8380, 82mpbird 224 . . 3  |-  ( ph  ->  E  Fn  ( B  X.  B ) )
84 mptexg 5924 . . . . . . 7  |-  ( I  e.  W  ->  (
x  e.  I  |->  R )  e.  _V )
8518, 84syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  R )  e.  _V )
86 dmmptg 5326 . . . . . . 7  |-  ( A. x  e.  I  R  e.  X  ->  dom  (
x  e.  I  |->  R )  =  I )
8721, 86syl 16 . . . . . 6  |-  ( ph  ->  dom  ( x  e.  I  |->  R )  =  I )
8814, 16, 85, 15, 87, 53prdsdsfn 13642 . . . . 5  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  Fn  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) )
8944, 44xpeq12d 4862 . . . . . 6  |-  ( ph  ->  ( ( Base `  Y
)  X.  ( Base `  Y ) )  =  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) )
9066, 89fneq12d 5497 . . . . 5  |-  ( ph  ->  ( D  Fn  (
( Base `  Y )  X.  ( Base `  Y
) )  <->  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  Fn  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) ) )
9188, 90mpbird 224 . . . 4  |-  ( ph  ->  D  Fn  ( (
Base `  Y )  X.  ( Base `  Y
) ) )
92 xpss12 4940 . . . . 5  |-  ( ( B  C_  ( Base `  Y )  /\  B  C_  ( Base `  Y
) )  ->  ( B  X.  B )  C_  ( ( Base `  Y
)  X.  ( Base `  Y ) ) )
9345, 45, 92syl2anc 643 . . . 4  |-  ( ph  ->  ( B  X.  B
)  C_  ( ( Base `  Y )  X.  ( Base `  Y
) ) )
94 fnssres 5517 . . . 4  |-  ( ( D  Fn  ( (
Base `  Y )  X.  ( Base `  Y
) )  /\  ( B  X.  B )  C_  ( ( Base `  Y
)  X.  ( Base `  Y ) ) )  ->  ( D  |`  ( B  X.  B
) )  Fn  ( B  X.  B ) )
9591, 93, 94syl2anc 643 . . 3  |-  ( ph  ->  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )
96 eqfnov2 6136 . . 3  |-  ( ( E  Fn  ( B  X.  B )  /\  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )  -> 
( E  =  ( D  |`  ( B  X.  B ) )  <->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B
) ) g ) ) )
9783, 95, 96syl2anc 643 . 2  |-  ( ph  ->  ( E  =  ( D  |`  ( B  X.  B ) )  <->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B
) ) g ) ) )
9874, 97mpbird 224 1  |-  ( ph  ->  E  =  ( D  |`  ( B  X.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    u. cun 3278    C_ wss 3280   {csn 3774    e. cmpt 4226    X. cxp 4835   dom cdm 4837   ran crn 4838    |` cres 4839    Fn wfn 5408   ` cfv 5413  (class class class)co 6040   X_cixp 7022   supcsup 7403   0cc0 8946   RR*cxr 9075    < clt 9076   Basecbs 13424   ↾s cress 13425   distcds 13493   X_scprds 13624
This theorem is referenced by:  resspwsds  18355  prdsbnd2  26394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626
  Copyright terms: Public domain W3C validator