MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressprdsds Structured version   Unicode version

Theorem ressprdsds 19788
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
ressprdsds.y  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  R ) ) )
ressprdsds.h  |-  ( ph  ->  H  =  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
ressprdsds.b  |-  B  =  ( Base `  H
)
ressprdsds.d  |-  D  =  ( dist `  Y
)
ressprdsds.e  |-  E  =  ( dist `  H
)
ressprdsds.s  |-  ( ph  ->  S  e.  U )
ressprdsds.t  |-  ( ph  ->  T  e.  V )
ressprdsds.i  |-  ( ph  ->  I  e.  W )
ressprdsds.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  X )
ressprdsds.a  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  Z )
Assertion
Ref Expression
ressprdsds  |-  ( ph  ->  E  =  ( D  |`  ( B  X.  B
) ) )
Distinct variable groups:    x, I    ph, x
Allowed substitution hints:    A( x)    B( x)    D( x)    R( x)    S( x)    T( x)    U( x)    E( x)    H( x)    V( x)    W( x)    X( x)    Y( x)    Z( x)

Proof of Theorem ressprdsds
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 6219 . . . . 5  |-  ( ( f  e.  B  /\  g  e.  B )  ->  ( f ( D  |`  ( B  X.  B
) ) g )  =  ( f D g ) )
21adantl 463 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( D  |`  ( B  X.  B
) ) g )  =  ( f D g ) )
3 ressprdsds.a . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  Z )
4 eqid 2433 . . . . . . . . . . . . . 14  |-  ( Rs  A )  =  ( Rs  A )
5 eqid 2433 . . . . . . . . . . . . . 14  |-  ( dist `  R )  =  (
dist `  R )
64, 5ressds 14335 . . . . . . . . . . . . 13  |-  ( A  e.  Z  ->  ( dist `  R )  =  ( dist `  ( Rs  A ) ) )
73, 6syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ( dist `  R )  =  ( dist `  ( Rs  A ) ) )
87oveqd 6097 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  I )  ->  (
( f `  x
) ( dist `  R
) ( g `  x ) )  =  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )
98mpteq2dva 4366 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
109adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
1110rneqd 5054 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R ) ( g `
 x ) ) )  =  ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( Rs  A ) ) ( g `  x ) ) ) )
1211uneq1d 3497 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } )  =  ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )  u.  {
0 } ) )
1312supeq1d 7684 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `
 x ) (
dist `  ( Rs  A
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
14 eqid 2433 . . . . . . 7  |-  ( S
X_s ( x  e.  I  |->  R ) )  =  ( S X_s ( x  e.  I  |->  R ) )
15 eqid 2433 . . . . . . 7  |-  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )
16 ressprdsds.s . . . . . . . 8  |-  ( ph  ->  S  e.  U )
1716adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  U )
18 ressprdsds.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
1918adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  W )
20 ressprdsds.r . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  X )
2120ralrimiva 2789 . . . . . . . 8  |-  ( ph  ->  A. x  e.  I  R  e.  X )
2221adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I  R  e.  X )
23 eqid 2433 . . . . . . . . . . . . . . . 16  |-  ( Base `  R )  =  (
Base `  R )
244, 23ressbasss 14213 . . . . . . . . . . . . . . 15  |-  ( Base `  ( Rs  A ) )  C_  ( Base `  R )
2524a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  I )  ->  ( Base `  ( Rs  A ) )  C_  ( Base `  R ) )
2625ralrimiva 2789 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  I 
( Base `  ( Rs  A
) )  C_  ( Base `  R ) )
27 ss2ixp 7264 . . . . . . . . . . . . 13  |-  ( A. x  e.  I  ( Base `  ( Rs  A ) )  C_  ( Base `  R )  ->  X_ x  e.  I  ( Base `  ( Rs  A ) )  C_  X_ x  e.  I  (
Base `  R )
)
2826, 27syl 16 . . . . . . . . . . . 12  |-  ( ph  -> 
X_ x  e.  I 
( Base `  ( Rs  A
) )  C_  X_ x  e.  I  ( Base `  R ) )
29 eqid 2433 . . . . . . . . . . . . 13  |-  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) )  =  ( T X_s (
x  e.  I  |->  ( Rs  A ) ) )
30 eqid 2433 . . . . . . . . . . . . 13  |-  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
31 ressprdsds.t . . . . . . . . . . . . 13  |-  ( ph  ->  T  e.  V )
32 ovex 6105 . . . . . . . . . . . . . . 15  |-  ( Rs  A )  e.  _V
3332rgenw 2773 . . . . . . . . . . . . . 14  |-  A. x  e.  I  ( Rs  A
)  e.  _V
3433a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  I 
( Rs  A )  e.  _V )
35 eqid 2433 . . . . . . . . . . . . 13  |-  ( Base `  ( Rs  A ) )  =  ( Base `  ( Rs  A ) )
3629, 30, 31, 18, 34, 35prdsbas3 14402 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  X_ x  e.  I  ( Base `  ( Rs  A ) ) )
3714, 15, 16, 18, 21, 23prdsbas3 14402 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  =  X_ x  e.  I 
( Base `  R )
)
3828, 36, 373sstr4d 3387 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  C_  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
39 ressprdsds.b . . . . . . . . . . . 12  |-  B  =  ( Base `  H
)
40 ressprdsds.h . . . . . . . . . . . . 13  |-  ( ph  ->  H  =  ( T
X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
4140fveq2d 5683 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
4239, 41syl5eq 2477 . . . . . . . . . . 11  |-  ( ph  ->  B  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
43 ressprdsds.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  R ) ) )
4443fveq2d 5683 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
4538, 42, 443sstr4d 3387 . . . . . . . . . 10  |-  ( ph  ->  B  C_  ( Base `  Y ) )
4645adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  C_  ( Base `  Y
) )
4744adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( Base `  Y )  =  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
4846, 47sseqtrd 3380 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  C_  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
49 simprl 748 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
5048, 49sseldd 3345 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
51 simprr 749 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
5248, 51sseldd 3345 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) )
53 eqid 2433 . . . . . . 7  |-  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )
5414, 15, 17, 19, 22, 50, 52, 5, 53prdsdsval2 14405 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g )  =  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  R
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
5531adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  T  e.  V )
5633a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( Rs  A )  e.  _V )
5742adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  =  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
5849, 57eleqtrd 2509 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
5951, 57eleqtrd 2509 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
60 eqid 2433 . . . . . . 7  |-  ( dist `  ( Rs  A ) )  =  ( dist `  ( Rs  A ) )
61 eqid 2433 . . . . . . 7  |-  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )
6229, 30, 55, 19, 56, 58, 59, 60, 61prdsdsval2 14405 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( Rs  A ) ) ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
6313, 54, 623eqtr4d 2475 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g )  =  ( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g ) )
64 ressprdsds.d . . . . . . 7  |-  D  =  ( dist `  Y
)
6543fveq2d 5683 . . . . . . 7  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) )
6664, 65syl5eq 2477 . . . . . 6  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) )
6766proplem3 14612 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f ( dist `  ( S X_s ( x  e.  I  |->  R ) ) ) g ) )
68 ressprdsds.e . . . . . . 7  |-  E  =  ( dist `  H
)
6940fveq2d 5683 . . . . . . 7  |-  ( ph  ->  ( dist `  H
)  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
7068, 69syl5eq 2477 . . . . . 6  |-  ( ph  ->  E  =  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) )
7170proplem3 14612 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f E g )  =  ( f ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) g ) )
7263, 67, 713eqtr4d 2475 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f E g ) )
732, 72eqtr2d 2466 . . 3  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f E g )  =  ( f ( D  |`  ( B  X.  B ) ) g ) )
7473ralrimivva 2798 . 2  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B ) ) g ) )
75 mptexg 5934 . . . . . 6  |-  ( I  e.  W  ->  (
x  e.  I  |->  ( Rs  A ) )  e. 
_V )
7618, 75syl 16 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  ( Rs  A ) )  e. 
_V )
77 eqid 2433 . . . . . . 7  |-  ( x  e.  I  |->  ( Rs  A ) )  =  ( x  e.  I  |->  ( Rs  A ) )
7832, 77dmmpti 5528 . . . . . 6  |-  dom  (
x  e.  I  |->  ( Rs  A ) )  =  I
7978a1i 11 . . . . 5  |-  ( ph  ->  dom  ( x  e.  I  |->  ( Rs  A ) )  =  I )
8029, 31, 76, 30, 79, 61prdsdsfn 14386 . . . 4  |-  ( ph  ->  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  Fn  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) )
8142, 42xpeq12d 4852 . . . . 5  |-  ( ph  ->  ( B  X.  B
)  =  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) )
8270, 81fneq12d 5491 . . . 4  |-  ( ph  ->  ( E  Fn  ( B  X.  B )  <->  ( dist `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  Fn  ( (
Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) )  X.  ( Base `  ( T X_s ( x  e.  I  |->  ( Rs  A ) ) ) ) ) ) )
8380, 82mpbird 232 . . 3  |-  ( ph  ->  E  Fn  ( B  X.  B ) )
84 mptexg 5934 . . . . . . 7  |-  ( I  e.  W  ->  (
x  e.  I  |->  R )  e.  _V )
8518, 84syl 16 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  R )  e.  _V )
86 dmmptg 5323 . . . . . . 7  |-  ( A. x  e.  I  R  e.  X  ->  dom  (
x  e.  I  |->  R )  =  I )
8721, 86syl 16 . . . . . 6  |-  ( ph  ->  dom  ( x  e.  I  |->  R )  =  I )
8814, 16, 85, 15, 87, 53prdsdsfn 14386 . . . . 5  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  Fn  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) )
8944, 44xpeq12d 4852 . . . . . 6  |-  ( ph  ->  ( ( Base `  Y
)  X.  ( Base `  Y ) )  =  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) )
9066, 89fneq12d 5491 . . . . 5  |-  ( ph  ->  ( D  Fn  (
( Base `  Y )  X.  ( Base `  Y
) )  <->  ( dist `  ( S X_s ( x  e.  I  |->  R ) ) )  Fn  ( ( Base `  ( S X_s ( x  e.  I  |->  R ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  R ) ) ) ) ) )
9188, 90mpbird 232 . . . 4  |-  ( ph  ->  D  Fn  ( (
Base `  Y )  X.  ( Base `  Y
) ) )
92 xpss12 4932 . . . . 5  |-  ( ( B  C_  ( Base `  Y )  /\  B  C_  ( Base `  Y
) )  ->  ( B  X.  B )  C_  ( ( Base `  Y
)  X.  ( Base `  Y ) ) )
9345, 45, 92syl2anc 654 . . . 4  |-  ( ph  ->  ( B  X.  B
)  C_  ( ( Base `  Y )  X.  ( Base `  Y
) ) )
94 fnssres 5512 . . . 4  |-  ( ( D  Fn  ( (
Base `  Y )  X.  ( Base `  Y
) )  /\  ( B  X.  B )  C_  ( ( Base `  Y
)  X.  ( Base `  Y ) ) )  ->  ( D  |`  ( B  X.  B
) )  Fn  ( B  X.  B ) )
9591, 93, 94syl2anc 654 . . 3  |-  ( ph  ->  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )
96 eqfnov2 6186 . . 3  |-  ( ( E  Fn  ( B  X.  B )  /\  ( D  |`  ( B  X.  B ) )  Fn  ( B  X.  B ) )  -> 
( E  =  ( D  |`  ( B  X.  B ) )  <->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B
) ) g ) ) )
9783, 95, 96syl2anc 654 . 2  |-  ( ph  ->  ( E  =  ( D  |`  ( B  X.  B ) )  <->  A. f  e.  B  A. g  e.  B  ( f E g )  =  ( f ( D  |`  ( B  X.  B
) ) g ) ) )
9874, 97mpbird 232 1  |-  ( ph  ->  E  =  ( D  |`  ( B  X.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   _Vcvv 2962    u. cun 3314    C_ wss 3316   {csn 3865    e. cmpt 4338    X. cxp 4825   dom cdm 4827   ran crn 4828    |` cres 4829    Fn wfn 5401   ` cfv 5406  (class class class)co 6080   X_cixp 7251   supcsup 7678   0cc0 9270   RR*cxr 9405    < clt 9406   Basecbs 14157   ↾s cress 14158   distcds 14230   X_scprds 14367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-hom 14245  df-cco 14246  df-prds 14369
This theorem is referenced by:  resspwsds  19789  prdsbnd2  28538
  Copyright terms: Public domain W3C validator