MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressnop0 Structured version   Unicode version

Theorem ressnop0 6058
Description: If  A is not in  C, then the restriction of a singleton of  <. A ,  B >. to  C is null. (Contributed by Scott Fenton, 15-Apr-2011.)
Assertion
Ref Expression
ressnop0  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )

Proof of Theorem ressnop0
StepHypRef Expression
1 opelxp1 4856 . . 3  |-  ( <. A ,  B >.  e.  ( C  X.  _V )  ->  A  e.  C
)
21con3i 135 . 2  |-  ( -.  A  e.  C  ->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
3 df-res 4835 . . . 4  |-  ( {
<. A ,  B >. }  |`  C )  =  ( { <. A ,  B >. }  i^i  ( C  X.  _V ) )
4 incom 3632 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
53, 4eqtri 2431 . . 3  |-  ( {
<. A ,  B >. }  |`  C )  =  ( ( C  X.  _V )  i^i  { <. A ,  B >. } )
6 disjsn 4032 . . . 4  |-  ( ( ( C  X.  _V )  i^i  { <. A ,  B >. } )  =  (/) 
<->  -.  <. A ,  B >.  e.  ( C  X.  _V ) )
76biimpri 206 . . 3  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( ( C  X.  _V )  i^i 
{ <. A ,  B >. } )  =  (/) )
85, 7syl5eq 2455 . 2  |-  ( -. 
<. A ,  B >.  e.  ( C  X.  _V )  ->  ( { <. A ,  B >. }  |`  C )  =  (/) )
92, 8syl 17 1  |-  ( -.  A  e.  C  -> 
( { <. A ,  B >. }  |`  C )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1405    e. wcel 1842   _Vcvv 3059    i^i cin 3413   (/)c0 3738   {csn 3972   <.cop 3978    X. cxp 4821    |` cres 4825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-opab 4454  df-xp 4829  df-res 4835
This theorem is referenced by:  fvunsn  6083  fsnunres  6092  wfrlem14  7034  constr3pthlem1  25072  ex-res  25579
  Copyright terms: Public domain W3C validator