MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resslem Structured version   Unicode version

Theorem resslem 14231
Description: Other elements of a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
resslem.r  |-  R  =  ( Ws  A )
resslem.e  |-  C  =  ( E `  W
)
resslem.f  |-  E  = Slot 
N
resslem.n  |-  N  e.  NN
resslem.b  |-  1  <  N
Assertion
Ref Expression
resslem  |-  ( A  e.  V  ->  C  =  ( E `  R ) )

Proof of Theorem resslem
StepHypRef Expression
1 resslem.r . . . . . . 7  |-  R  =  ( Ws  A )
2 eqid 2443 . . . . . . 7  |-  ( Base `  W )  =  (
Base `  W )
31, 2ressid2 14226 . . . . . 6  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  W )
43fveq2d 5695 . . . . 5  |-  ( ( ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
543expib 1190 . . . 4  |-  ( (
Base `  W )  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) ) )
61, 2ressval2 14227 . . . . . . 7  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  ( Base `  W ) )
>. ) )
76fveq2d 5695 . . . . . 6  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W ) ) >.
) ) )
8 resslem.f . . . . . . . 8  |-  E  = Slot 
N
9 resslem.n . . . . . . . 8  |-  N  e.  NN
108, 9ndxid 14195 . . . . . . 7  |-  E  = Slot  ( E `  ndx )
118, 9ndxarg 14194 . . . . . . . . 9  |-  ( E `
 ndx )  =  N
12 1re 9385 . . . . . . . . . 10  |-  1  e.  RR
13 resslem.b . . . . . . . . . 10  |-  1  <  N
1412, 13gtneii 9486 . . . . . . . . 9  |-  N  =/=  1
1511, 14eqnetri 2625 . . . . . . . 8  |-  ( E `
 ndx )  =/=  1
16 basendx 14223 . . . . . . . 8  |-  ( Base `  ndx )  =  1
1715, 16neeqtrri 2631 . . . . . . 7  |-  ( E `
 ndx )  =/=  ( Base `  ndx )
1810, 17setsnid 14216 . . . . . 6  |-  ( E `
 W )  =  ( E `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  ( Base `  W
) ) >. )
)
197, 18syl6eqr 2493 . . . . 5  |-  ( ( -.  ( Base `  W
)  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
20193expib 1190 . . . 4  |-  ( -.  ( Base `  W
)  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) ) )
215, 20pm2.61i 164 . . 3  |-  ( ( W  e.  _V  /\  A  e.  V )  ->  ( E `  R
)  =  ( E `
 W ) )
22 reldmress 14224 . . . . . . . . 9  |-  Rel  doms
2322ovprc1 6119 . . . . . . . 8  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
241, 23syl5eq 2487 . . . . . . 7  |-  ( -.  W  e.  _V  ->  R  =  (/) )
2524fveq2d 5695 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  ( E `  (/) ) )
268str0 14212 . . . . . 6  |-  (/)  =  ( E `  (/) )
2725, 26syl6eqr 2493 . . . . 5  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  (/) )
28 fvprc 5685 . . . . 5  |-  ( -.  W  e.  _V  ->  ( E `  W )  =  (/) )
2927, 28eqtr4d 2478 . . . 4  |-  ( -.  W  e.  _V  ->  ( E `  R )  =  ( E `  W ) )
3029adantr 465 . . 3  |-  ( ( -.  W  e.  _V  /\  A  e.  V )  ->  ( E `  R )  =  ( E `  W ) )
3121, 30pm2.61ian 788 . 2  |-  ( A  e.  V  ->  ( E `  R )  =  ( E `  W ) )
32 resslem.e . 2  |-  C  =  ( E `  W
)
3331, 32syl6reqr 2494 1  |-  ( A  e.  V  ->  C  =  ( E `  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2972    i^i cin 3327    C_ wss 3328   (/)c0 3637   <.cop 3883   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   1c1 9283    < clt 9418   NNcn 10322   ndxcnx 14171   sSet csts 14172  Slot cslot 14173   Basecbs 14174   ↾s cress 14175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-i2m1 9350  ax-1ne0 9351  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-ltxr 9423  df-nn 10323  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181
This theorem is referenced by:  ressplusg  14280  ressmulr  14291  ressstarv  14292  resssca  14316  ressvsca  14317  ressip  14318  resstset  14331  ressle  14338  ressds  14352  resshom  14357  ressco  14358  ressunif  19837
  Copyright terms: Public domain W3C validator