MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressinbas Structured version   Visualization version   Unicode version

Theorem ressinbas 15263
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressinbas  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )

Proof of Theorem ressinbas
StepHypRef Expression
1 elex 3040 . 2  |-  ( A  e.  X  ->  A  e.  _V )
2 eqid 2471 . . . . . . 7  |-  ( Ws  A )  =  ( Ws  A )
3 ressid.1 . . . . . . 7  |-  B  =  ( Base `  W
)
42, 3ressid2 15255 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  W )
5 ssid 3437 . . . . . . . 8  |-  B  C_  B
6 incom 3616 . . . . . . . . 9  |-  ( A  i^i  B )  =  ( B  i^i  A
)
7 df-ss 3404 . . . . . . . . . 10  |-  ( B 
C_  A  <->  ( B  i^i  A )  =  B )
87biimpi 199 . . . . . . . . 9  |-  ( B 
C_  A  ->  ( B  i^i  A )  =  B )
96, 8syl5eq 2517 . . . . . . . 8  |-  ( B 
C_  A  ->  ( A  i^i  B )  =  B )
105, 9syl5sseqr 3467 . . . . . . 7  |-  ( B 
C_  A  ->  B  C_  ( A  i^i  B
) )
11 elex 3040 . . . . . . 7  |-  ( W  e.  _V  ->  W  e.  _V )
12 inex1g 4539 . . . . . . 7  |-  ( A  e.  _V  ->  ( A  i^i  B )  e. 
_V )
13 eqid 2471 . . . . . . . 8  |-  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( A  i^i  B ) )
1413, 3ressid2 15255 . . . . . . 7  |-  ( ( B  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  W )
1510, 11, 12, 14syl3an 1334 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  ( A  i^i  B ) )  =  W )
164, 15eqtr4d 2508 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
17163expb 1232 . . . 4  |-  ( ( B  C_  A  /\  ( W  e.  _V  /\  A  e.  _V )
)  ->  ( Ws  A
)  =  ( Ws  ( A  i^i  B ) ) )
18 inass 3633 . . . . . . . . 9  |-  ( ( A  i^i  B )  i^i  B )  =  ( A  i^i  ( B  i^i  B ) )
19 inidm 3632 . . . . . . . . . 10  |-  ( B  i^i  B )  =  B
2019ineq2i 3622 . . . . . . . . 9  |-  ( A  i^i  ( B  i^i  B ) )  =  ( A  i^i  B )
2118, 20eqtr2i 2494 . . . . . . . 8  |-  ( A  i^i  B )  =  ( ( A  i^i  B )  i^i  B )
2221opeq2i 4162 . . . . . . 7  |-  <. ( Base `  ndx ) ,  ( A  i^i  B
) >.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  B )
>.
2322oveq2i 6319 . . . . . 6  |-  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  B )
>. )
242, 3ressval2 15256 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
25 inss1 3643 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
26 sstr 3426 . . . . . . . . 9  |-  ( ( B  C_  ( A  i^i  B )  /\  ( A  i^i  B )  C_  A )  ->  B  C_  A )
2725, 26mpan2 685 . . . . . . . 8  |-  ( B 
C_  ( A  i^i  B )  ->  B  C_  A
)
2827con3i 142 . . . . . . 7  |-  ( -.  B  C_  A  ->  -.  B  C_  ( A  i^i  B ) )
2913, 3ressval2 15256 . . . . . . 7  |-  ( ( -.  B  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i 
B ) >. )
)
3028, 11, 12, 29syl3an 1334 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i 
B ) >. )
)
3123, 24, 303eqtr4a 2531 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
32313expb 1232 . . . 4  |-  ( ( -.  B  C_  A  /\  ( W  e.  _V  /\  A  e.  _V )
)  ->  ( Ws  A
)  =  ( Ws  ( A  i^i  B ) ) )
3317, 32pm2.61ian 807 . . 3  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
34 reldmress 15253 . . . . . 6  |-  Rel  doms
3534ovprc1 6339 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
3634ovprc1 6339 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  ( A  i^i  B
) )  =  (/) )
3735, 36eqtr4d 2508 . . . 4  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
3837adantr 472 . . 3  |-  ( ( -.  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
3933, 38pm2.61ian 807 . 2  |-  ( A  e.  _V  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
401, 39syl 17 1  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   <.cop 3965   ` cfv 5589  (class class class)co 6308   ndxcnx 15196   sSet csts 15197   Basecbs 15199   ↾s cress 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-iota 5553  df-fun 5591  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-ress 15206
This theorem is referenced by:  ressress  15265  rescabs  15816  resscat  15835  funcres2c  15884  ressffth  15921  cphsubrglem  22233  suborng  28652
  Copyright terms: Public domain W3C validator