MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressinbas Structured version   Unicode version

Theorem ressinbas 14255
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressinbas  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )

Proof of Theorem ressinbas
StepHypRef Expression
1 elex 3002 . 2  |-  ( A  e.  X  ->  A  e.  _V )
2 eqid 2443 . . . . . . 7  |-  ( Ws  A )  =  ( Ws  A )
3 ressid.1 . . . . . . 7  |-  B  =  ( Base `  W
)
42, 3ressid2 14247 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  W )
5 ssid 3396 . . . . . . . 8  |-  B  C_  B
6 incom 3564 . . . . . . . . 9  |-  ( A  i^i  B )  =  ( B  i^i  A
)
7 df-ss 3363 . . . . . . . . . 10  |-  ( B 
C_  A  <->  ( B  i^i  A )  =  B )
87biimpi 194 . . . . . . . . 9  |-  ( B 
C_  A  ->  ( B  i^i  A )  =  B )
96, 8syl5eq 2487 . . . . . . . 8  |-  ( B 
C_  A  ->  ( A  i^i  B )  =  B )
105, 9syl5sseqr 3426 . . . . . . 7  |-  ( B 
C_  A  ->  B  C_  ( A  i^i  B
) )
11 elex 3002 . . . . . . 7  |-  ( W  e.  _V  ->  W  e.  _V )
12 inex1g 4456 . . . . . . 7  |-  ( A  e.  _V  ->  ( A  i^i  B )  e. 
_V )
13 eqid 2443 . . . . . . . 8  |-  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( A  i^i  B ) )
1413, 3ressid2 14247 . . . . . . 7  |-  ( ( B  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  W )
1510, 11, 12, 14syl3an 1260 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  ( A  i^i  B ) )  =  W )
164, 15eqtr4d 2478 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
17163expb 1188 . . . 4  |-  ( ( B  C_  A  /\  ( W  e.  _V  /\  A  e.  _V )
)  ->  ( Ws  A
)  =  ( Ws  ( A  i^i  B ) ) )
18 inass 3581 . . . . . . . . 9  |-  ( ( A  i^i  B )  i^i  B )  =  ( A  i^i  ( B  i^i  B ) )
19 inidm 3580 . . . . . . . . . 10  |-  ( B  i^i  B )  =  B
2019ineq2i 3570 . . . . . . . . 9  |-  ( A  i^i  ( B  i^i  B ) )  =  ( A  i^i  B )
2118, 20eqtr2i 2464 . . . . . . . 8  |-  ( A  i^i  B )  =  ( ( A  i^i  B )  i^i  B )
2221opeq2i 4084 . . . . . . 7  |-  <. ( Base `  ndx ) ,  ( A  i^i  B
) >.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  B )
>.
2322oveq2i 6123 . . . . . 6  |-  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  B )
>. )
242, 3ressval2 14248 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
25 inss1 3591 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
26 sstr 3385 . . . . . . . . 9  |-  ( ( B  C_  ( A  i^i  B )  /\  ( A  i^i  B )  C_  A )  ->  B  C_  A )
2725, 26mpan2 671 . . . . . . . 8  |-  ( B 
C_  ( A  i^i  B )  ->  B  C_  A
)
2827con3i 135 . . . . . . 7  |-  ( -.  B  C_  A  ->  -.  B  C_  ( A  i^i  B ) )
2913, 3ressval2 14248 . . . . . . 7  |-  ( ( -.  B  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i 
B ) >. )
)
3028, 11, 12, 29syl3an 1260 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i 
B ) >. )
)
3123, 24, 303eqtr4a 2501 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
32313expb 1188 . . . 4  |-  ( ( -.  B  C_  A  /\  ( W  e.  _V  /\  A  e.  _V )
)  ->  ( Ws  A
)  =  ( Ws  ( A  i^i  B ) ) )
3317, 32pm2.61ian 788 . . 3  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
34 reldmress 14245 . . . . . 6  |-  Rel  doms
3534ovprc1 6140 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
3634ovprc1 6140 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  ( A  i^i  B
) )  =  (/) )
3735, 36eqtr4d 2478 . . . 4  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
3837adantr 465 . . 3  |-  ( ( -.  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
3933, 38pm2.61ian 788 . 2  |-  ( A  e.  _V  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
401, 39syl 16 1  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   _Vcvv 2993    i^i cin 3348    C_ wss 3349   (/)c0 3658   <.cop 3904   ` cfv 5439  (class class class)co 6112   ndxcnx 14192   sSet csts 14193   Basecbs 14195   ↾s cress 14196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-iota 5402  df-fun 5441  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-ress 14202
This theorem is referenced by:  ressress  14256  rescabs  14767  resscat  14783  funcres2c  14832  ressffth  14869  cphsubrglem  20718  suborng  26305
  Copyright terms: Public domain W3C validator