MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressbas Structured version   Unicode version

Theorem ressbas 14224
Description: Base set of a structure restriction. (Contributed by Stefan O'Rear, 26-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressbas  |-  ( A  e.  V  ->  ( A  i^i  B )  =  ( Base `  R
) )

Proof of Theorem ressbas
StepHypRef Expression
1 ressbas.b . . . . 5  |-  B  =  ( Base `  W
)
2 simp1 983 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  B  C_  A )
3 sseqin2 3566 . . . . . 6  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
42, 3sylib 196 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  B )
5 ressbas.r . . . . . . 7  |-  R  =  ( Ws  A )
65, 1ressid2 14222 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  W )
76fveq2d 5692 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Base `  R )  =  ( Base `  W
) )
81, 4, 73eqtr4a 2499 . . . 4  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R
) )
983expib 1185 . . 3  |-  ( B 
C_  A  ->  (
( W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) ) )
10 simp2 984 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  W  e.  _V )
11 fvex 5698 . . . . . . . 8  |-  ( Base `  W )  e.  _V
121, 11eqeltri 2511 . . . . . . 7  |-  B  e. 
_V
1312inex2 4431 . . . . . 6  |-  ( A  i^i  B )  e. 
_V
14 baseid 14216 . . . . . . 7  |-  Base  = Slot  ( Base `  ndx )
1514setsid 14211 . . . . . 6  |-  ( ( W  e.  _V  /\  ( A  i^i  B )  e.  _V )  -> 
( A  i^i  B
)  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
1610, 13, 15sylancl 657 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
175, 1ressval2 14223 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
1817fveq2d 5692 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( Base `  R
)  =  ( Base `  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
1916, 18eqtr4d 2476 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) )
20193expib 1185 . . 3  |-  ( -.  B  C_  A  ->  ( ( W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) ) )
219, 20pm2.61i 164 . 2  |-  ( ( W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B
)  =  ( Base `  R ) )
22 0fv 5720 . . . . 5  |-  ( (/) `  ( Base `  ndx ) )  =  (/)
23 0ex 4419 . . . . . 6  |-  (/)  e.  _V
2423, 14strfvn 14187 . . . . 5  |-  ( Base `  (/) )  =  (
(/) `  ( Base ` 
ndx ) )
25 in0 3660 . . . . 5  |-  ( A  i^i  (/) )  =  (/)
2622, 24, 253eqtr4ri 2472 . . . 4  |-  ( A  i^i  (/) )  =  (
Base `  (/) )
27 fvprc 5682 . . . . . 6  |-  ( -.  W  e.  _V  ->  (
Base `  W )  =  (/) )
281, 27syl5eq 2485 . . . . 5  |-  ( -.  W  e.  _V  ->  B  =  (/) )
2928ineq2d 3549 . . . 4  |-  ( -.  W  e.  _V  ->  ( A  i^i  B )  =  ( A  i^i  (/) ) )
30 reldmress 14220 . . . . . . 7  |-  Rel  doms
3130ovprc1 6118 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
325, 31syl5eq 2485 . . . . 5  |-  ( -.  W  e.  _V  ->  R  =  (/) )
3332fveq2d 5692 . . . 4  |-  ( -.  W  e.  _V  ->  (
Base `  R )  =  ( Base `  (/) ) )
3426, 29, 333eqtr4a 2499 . . 3  |-  ( -.  W  e.  _V  ->  ( A  i^i  B )  =  ( Base `  R
) )
3534adantr 462 . 2  |-  ( ( -.  W  e.  _V  /\  A  e.  V )  ->  ( A  i^i  B )  =  ( Base `  R ) )
3621, 35pm2.61ian 783 1  |-  ( A  e.  V  ->  ( A  i^i  B )  =  ( Base `  R
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970    i^i cin 3324    C_ wss 3325   (/)c0 3634   <.cop 3880   ` cfv 5415  (class class class)co 6090   ndxcnx 14167   sSet csts 14168   Basecbs 14170   ↾s cress 14171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-i2m1 9346  ax-1ne0 9347  ax-rrecex 9350  ax-cnre 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-recs 6828  df-rdg 6862  df-nn 10319  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177
This theorem is referenced by:  ressbas2  14225  ressbasss  14226  ressress  14231  rescabs  14742  resscatc  14969  resscntz  15842  idrespermg  15909  opprsubg  16718  subrgpropd  16879  sralmod  17246  resstopn  18749  resstps  18750  ressuss  19797  ressxms  20059  ressms  20060  cphsubrglem  20655  resspos  26053  resstos  26054  xrge0base  26079  xrge00  26080  submomnd  26106  suborng  26218
  Copyright terms: Public domain W3C validator