MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resres Structured version   Visualization version   Unicode version

Theorem resres 5123
Description: The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
Assertion
Ref Expression
resres  |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )

Proof of Theorem resres
StepHypRef Expression
1 df-res 4851 . 2  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  B )  i^i  ( C  X.  _V ) )
2 df-res 4851 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
32ineq1i 3621 . 2  |-  ( ( A  |`  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( C  X.  _V ) )
4 xpindir 4974 . . . 4  |-  ( ( B  i^i  C )  X.  _V )  =  ( ( B  X.  _V )  i^i  ( C  X.  _V ) )
54ineq2i 3622 . . 3  |-  ( A  i^i  ( ( B  i^i  C )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  i^i  ( C  X.  _V ) ) )
6 df-res 4851 . . 3  |-  ( A  |`  ( B  i^i  C
) )  =  ( A  i^i  ( ( B  i^i  C )  X.  _V ) )
7 inass 3633 . . 3  |-  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( C  X.  _V ) )  =  ( A  i^i  ( ( B  X.  _V )  i^i  ( C  X.  _V ) ) )
85, 6, 73eqtr4ri 2504 . 2  |-  ( ( A  i^i  ( B  X.  _V ) )  i^i  ( C  X.  _V ) )  =  ( A  |`  ( B  i^i  C ) )
91, 3, 83eqtri 2497 1  |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1452   _Vcvv 3031    i^i cin 3389    X. cxp 4837    |` cres 4841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-opab 4455  df-xp 4845  df-rel 4846  df-res 4851
This theorem is referenced by:  rescom  5135  resabs1  5139  resima2  5144  resmpt3  5161  resdisj  5272  rescnvcnv  5305  fresin  5764  resdif  5848  curry1  6907  curry2  6910  wfrlem4  7057  pmresg  7517  gruima  9245  rlimres  13699  lo1res  13700  rlimresb  13706  lo1eq  13709  rlimeq  13710  fsets  15227  setsid  15242  sscres  15806  gsumzres  17621  txkgen  20744  tsmsres  21236  ressxms  21618  ressms  21619  dvres  22945  dvres3a  22948  cpnres  22970  dvmptres3  22989  rlimcnp2  23971  df1stres  28359  df2ndres  28360  indf1ofs  28921  frrlem4  30588  dfrcl2  36337  relexpaddss  36381  fouriersw  38207  fouriercn  38208
  Copyright terms: Public domain W3C validator