MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resqrcl Structured version   Unicode version

Theorem resqrcl 13037
Description: Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
resqrcl  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )

Proof of Theorem resqrcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrex 13034 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. y  e.  RR  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )
2 simp1l 1015 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  A  e.  RR )
3 recn 9571 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
4 sqrval 13020 . . . . . 6  |-  ( A  e.  CC  ->  ( sqr `  A )  =  ( iota_ x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
52, 3, 43syl 20 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  (
iota_ x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
6 simp3r 1020 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( y ^ 2 )  =  A )
7 simp3l 1019 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  0  <_  y )
8 rere 12905 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
Re `  y )  =  y )
983ad2ant2 1013 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( Re `  y )  =  y )
107, 9breqtrrd 4466 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  0  <_  ( Re `  y ) )
11 rennim 13022 . . . . . . . 8  |-  ( y  e.  RR  ->  (
_i  x.  y )  e/  RR+ )
12113ad2ant2 1013 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( _i  x.  y )  e/  RR+ )
136, 10, 123jca 1171 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
)
14 recn 9571 . . . . . . . 8  |-  ( y  e.  RR  ->  y  e.  CC )
15143ad2ant2 1013 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  y  e.  CC )
16 resqreu 13036 . . . . . . . 8  |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
17163ad2ant1 1012 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  E! x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)
18 oveq1 6282 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
1918eqeq1d 2462 . . . . . . . . 9  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
20 fveq2 5857 . . . . . . . . . 10  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
2120breq2d 4452 . . . . . . . . 9  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
22 oveq2 6283 . . . . . . . . . 10  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
23 neleq1 2798 . . . . . . . . . 10  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
2422, 23syl 16 . . . . . . . . 9  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
2519, 21, 243anbi123d 1294 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
2625riota2 6259 . . . . . . 7  |-  ( ( y  e.  CC  /\  E! x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  ->  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  (
iota_ x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  y ) )
2715, 17, 26syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  <->  ( iota_ x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  y ) )
2813, 27mpbid 210 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( iota_ x  e.  CC  ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  y )
295, 28eqtrd 2501 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  =  y )
30 simp2 992 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  y  e.  RR )
3129, 30eqeltrd 2548 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  y  e.  RR  /\  ( 0  <_  y  /\  ( y ^ 2 )  =  A ) )  ->  ( sqr `  A )  e.  RR )
3231rexlimdv3a 2950 . 2  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( E. y  e.  RR  ( 0  <_ 
y  /\  ( y ^ 2 )  =  A )  ->  ( sqr `  A )  e.  RR ) )
331, 32mpd 15 1  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( sqr `  A
)  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    e/ wnel 2656   E.wrex 2808   E!wreu 2809   class class class wbr 4440   ` cfv 5579   iota_crio 6235  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   _ici 9483    x. cmul 9486    <_ cle 9618   2c2 10574   RR+crp 11209   ^cexp 12122   Recre 12880   sqrcsqr 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-2nd 6775  df-recs 7032  df-rdg 7066  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018
This theorem is referenced by:  resqrthlem  13038  remsqsqr  13040  sqrge0  13041  sqrgt0  13042  sqrmul  13043  sqrle  13044  sqrlt  13045  sqr11  13046  rpsqrcl  13048  sqrdiv  13049  sqrneglem  13050  sqrneg  13051  sqrsq2  13052  abscl  13061  sqreulem  13141  sqreu  13142  amgm2  13151  sqrcli  13153  resqrcld  13198  resqrcn  22844  loglesqr  22853  1cubrlem  22893  ftc1anclem3  29520
  Copyright terms: Public domain W3C validator