MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resoprab Structured version   Unicode version

Theorem resoprab 6291
Description: Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
Assertion
Ref Expression
resoprab  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Distinct variable groups:    x, y,
z, A    x, B, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem resoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 resopab 5256 . . 3  |-  ( {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  |`  ( A  X.  B ) )  =  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) ) }
2 19.42vv 1937 . . . . 5  |-  ( E. x E. y ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  e.  ( A  X.  B
)  /\  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) ) )
3 an12 795 . . . . . . 7  |-  ( ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( w  e.  ( A  X.  B
)  /\  ph ) ) )
4 eleq1 2524 . . . . . . . . . 10  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  <. x ,  y
>.  e.  ( A  X.  B ) ) )
5 opelxp 4972 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
64, 5syl6bb 261 . . . . . . . . 9  |-  ( w  =  <. x ,  y
>.  ->  ( w  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) ) )
76anbi1d 704 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( ( w  e.  ( A  X.  B )  /\  ph ) 
<->  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
87pm5.32i 637 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  (
w  e.  ( A  X.  B )  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
93, 8bitri 249 . . . . . 6  |-  ( ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
1092exbii 1636 . . . . 5  |-  ( E. x E. y ( w  e.  ( A  X.  B )  /\  ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
112, 10bitr3i 251 . . . 4  |-  ( ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )  <->  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) )
1211opabbii 4459 . . 3  |-  { <. w ,  z >.  |  ( w  e.  ( A  X.  B )  /\  E. x E. y ( w  =  <. x ,  y >.  /\  ph ) ) }  =  { <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
131, 12eqtri 2481 . 2  |-  ( {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  |`  ( A  X.  B ) )  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
14 dfoprab2 6237 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
1514reseq1i 5209 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  ( { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  |`  ( A  X.  B
) )
16 dfoprab2 6237 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ph ) }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ( ( x  e.  A  /\  y  e.  B )  /\  ph ) ) }
1713, 15, 163eqtr4i 2491 1  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  |`  ( A  X.  B ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ph ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758   <.cop 3986   {copab 4452    X. cxp 4941    |` cres 4945   {coprab 6196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pr 4634
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-opab 4454  df-xp 4949  df-rel 4950  df-res 4955  df-oprab 6199
This theorem is referenced by:  resoprab2  6292  df1stres  26145  df2ndres  26146
  Copyright terms: Public domain W3C validator