MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resopab Structured version   Unicode version

Theorem resopab 5165
Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
Assertion
Ref Expression
resopab  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem resopab
StepHypRef Expression
1 df-res 4864 . 2  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  ( { <. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )
2 df-xp 4858 . . . . . 6  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
3 vex 2987 . . . . . . . 8  |-  y  e. 
_V
43biantru 505 . . . . . . 7  |-  ( x  e.  A  <->  ( x  e.  A  /\  y  e.  _V ) )
54opabbii 4368 . . . . . 6  |-  { <. x ,  y >.  |  x  e.  A }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  _V ) }
62, 5eqtr4i 2466 . . . . 5  |-  ( A  X.  _V )  =  { <. x ,  y
>.  |  x  e.  A }
76ineq2i 3561 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )
8 incom 3555 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  i^i  { <. x ,  y >.  |  x  e.  A } )  =  ( { <. x ,  y
>.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )
97, 8eqtri 2463 . . 3  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  ( { <. x ,  y >.  |  x  e.  A }  i^i  {
<. x ,  y >.  |  ph } )
10 inopab 4982 . . 3  |-  ( {
<. x ,  y >.  |  x  e.  A }  i^i  { <. x ,  y >.  |  ph } )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
119, 10eqtri 2463 . 2  |-  ( {
<. x ,  y >.  |  ph }  i^i  ( A  X.  _V ) )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
121, 11eqtri 2463 1  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2984    i^i cin 3339   {copab 4361    X. cxp 4850    |` cres 4854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pr 4543
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-opab 4363  df-xp 4858  df-rel 4859  df-res 4864
This theorem is referenced by:  resopab2  5167  opabresid  5171  mptpreima  5343  isarep2  5510  resoprab  6198  elrnmpt2res  6216  df1st2  6671  df2nd2  6672
  Copyright terms: Public domain W3C validator