MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpt3 Structured version   Unicode version

Theorem resmpt3 5178
Description: Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
Assertion
Ref Expression
resmpt3  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem resmpt3
StepHypRef Expression
1 resres 5144 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )
2 ssid 3396 . . . 4  |-  A  C_  A
3 resmpt 5177 . . . 4  |-  ( A 
C_  A  ->  (
( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C ) )
42, 3ax-mp 5 . . 3  |-  ( ( x  e.  A  |->  C )  |`  A )  =  ( x  e.  A  |->  C )
54reseq1i 5127 . 2  |-  ( ( ( x  e.  A  |->  C )  |`  A )  |`  B )  =  ( ( x  e.  A  |->  C )  |`  B )
6 inss1 3591 . . 3  |-  ( A  i^i  B )  C_  A
7 resmpt 5177 . . 3  |-  ( ( A  i^i  B ) 
C_  A  ->  (
( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B
)  |->  C ) )
86, 7ax-mp 5 . 2  |-  ( ( x  e.  A  |->  C )  |`  ( A  i^i  B ) )  =  ( x  e.  ( A  i^i  B ) 
|->  C )
91, 5, 83eqtr3i 2471 1  |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B
)  |->  C )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1369    i^i cin 3348    C_ wss 3349    e. cmpt 4371    |` cres 4863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-opab 4372  df-mpt 4373  df-xp 4867  df-rel 4868  df-res 4873
This theorem is referenced by:  offres  6593  lo1resb  13063  o1resb  13065  measinb2  26659  eulerpartgbij  26777
  Copyright terms: Public domain W3C validator