MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmpt2 Structured version   Unicode version

Theorem resmpt2 6408
Description: Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
Assertion
Ref Expression
resmpt2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( x  e.  A ,  y  e.  B  |->  E )  |`  ( C  X.  D
) )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Distinct variable groups:    x, A, y    x, B, y    x, C, y    x, D, y
Allowed substitution hints:    E( x, y)

Proof of Theorem resmpt2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 resoprab2 6407 . 2  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  E
) }  |`  ( C  X.  D ) )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  z  =  E
) } )
2 df-mpt2 6310 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  E )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  E
) }
32reseq1i 5121 . 2  |-  ( ( x  e.  A , 
y  e.  B  |->  E )  |`  ( C  X.  D ) )  =  ( { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  E
) }  |`  ( C  X.  D ) )
4 df-mpt2 6310 . 2  |-  ( x  e.  C ,  y  e.  D  |->  E )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  C  /\  y  e.  D )  /\  z  =  E
) }
51, 3, 43eqtr4g 2495 1  |-  ( ( C  C_  A  /\  D  C_  B )  -> 
( ( x  e.  A ,  y  e.  B  |->  E )  |`  ( C  X.  D
) )  =  ( x  e.  C , 
y  e.  D  |->  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870    C_ wss 3442    X. cxp 4852    |` cres 4856   {coprab 6306    |-> cmpt2 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-opab 4485  df-xp 4860  df-rel 4861  df-res 4866  df-oprab 6309  df-mpt2 6310
This theorem is referenced by:  ofmres  6803  cantnfval2  8173  pgrpsubgsymg  17000  sylow3lem5  17218  mamures  19346  mdetrsca2  19560  mdetrlin2  19563  mdetunilem5  19572  smadiadetglem1  19627  smadiadetglem2  19628  pmatcollpw3lem  19738  txss12  20551  txbasval  20552  cnmpt2res  20623  fmucndlem  21237  cnmpt2pc  21852  oprpiece1res1  21875  oprpiece1res2  21876  cxpcn3  23553  ressplusf  28249  submatres  28471  cvmlift2lem6  29819  cvmlift2lem12  29825  icorempt2  31488  rngchomrnghmresALTV  38755  rhmsubclem1  38845  rhmsubcALTVlem1  38864
  Copyright terms: Public domain W3C validator