MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resmhm Structured version   Visualization version   Unicode version

Theorem resmhm 16684
Description: Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypothesis
Ref Expression
resmhm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resmhm  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )

Proof of Theorem resmhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmrcl2 16664 . . 3  |-  ( F  e.  ( S MndHom  T
)  ->  T  e.  Mnd )
2 resmhm.u . . . 4  |-  U  =  ( Ss  X )
32submmnd 16679 . . 3  |-  ( X  e.  (SubMnd `  S
)  ->  U  e.  Mnd )
41, 3anim12ci 577 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( U  e.  Mnd  /\  T  e. 
Mnd ) )
5 eqid 2471 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
6 eqid 2471 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
75, 6mhmf 16665 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  F :
( Base `  S ) --> ( Base `  T )
)
85submss 16675 . . . . 5  |-  ( X  e.  (SubMnd `  S
)  ->  X  C_  ( Base `  S ) )
9 fssres 5761 . . . . 5  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
107, 8, 9syl2an 485 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
118adantl 473 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  C_  ( Base `  S ) )
122, 5ressbas2 15258 . . . . . 6  |-  ( X 
C_  ( Base `  S
)  ->  X  =  ( Base `  U )
)
1311, 12syl 17 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  X  =  ( Base `  U )
)
1413feq2d 5725 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
1510, 14mpbid 215 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
16 simpll 768 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  F  e.  ( S MndHom  T ) )
178ad2antlr 741 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  X  C_  ( Base `  S ) )
18 simprl 772 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  X )
1917, 18sseldd 3419 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  x  e.  ( Base `  S )
)
20 simprr 774 . . . . . . . 8  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  X )
2117, 20sseldd 3419 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  y  e.  ( Base `  S )
)
22 eqid 2471 . . . . . . . 8  |-  ( +g  `  S )  =  ( +g  `  S )
23 eqid 2471 . . . . . . . 8  |-  ( +g  `  T )  =  ( +g  `  T )
245, 22, 23mhmlin 16667 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2516, 19, 21, 24syl3anc 1292 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
2622submcl 16678 . . . . . . . . 9  |-  ( ( X  e.  (SubMnd `  S )  /\  x  e.  X  /\  y  e.  X )  ->  (
x ( +g  `  S
) y )  e.  X )
27263expb 1232 . . . . . . . 8  |-  ( ( X  e.  (SubMnd `  S )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
2827adantll 728 . . . . . . 7  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( x
( +g  `  S ) y )  e.  X
)
29 fvres 5893 . . . . . . 7  |-  ( ( x ( +g  `  S
) y )  e.  X  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
3028, 29syl 17 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( F `
 ( x ( +g  `  S ) y ) ) )
31 fvres 5893 . . . . . . . 8  |-  ( x  e.  X  ->  (
( F  |`  X ) `
 x )  =  ( F `  x
) )
32 fvres 5893 . . . . . . . 8  |-  ( y  e.  X  ->  (
( F  |`  X ) `
 y )  =  ( F `  y
) )
3331, 32oveqan12d 6327 . . . . . . 7  |-  ( ( x  e.  X  /\  y  e.  X )  ->  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3433adantl 473 . . . . . 6  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( (
( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) )  =  ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) )
3525, 30, 343eqtr4d 2515 . . . . 5  |-  ( ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S
) )  /\  (
x  e.  X  /\  y  e.  X )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
3635ralrimivva 2814 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  X  A. y  e.  X  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) )
372, 22ressplusg 15317 . . . . . . . . . 10  |-  ( X  e.  (SubMnd `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
3837adantl 473 . . . . . . . . 9  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
3938oveqd 6325 . . . . . . . 8  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( x
( +g  `  S ) y )  =  ( x ( +g  `  U
) y ) )
4039fveq2d 5883 . . . . . . 7  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( x ( +g  `  S ) y ) )  =  ( ( F  |`  X ) `  ( x ( +g  `  U ) y ) ) )
4140eqeq1d 2473 . . . . . 6  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  ( ( F  |`  X ) `  ( x ( +g  `  U ) y ) )  =  ( ( ( F  |`  X ) `
 x ) ( +g  `  T ) ( ( F  |`  X ) `  y
) ) ) )
4213, 41raleqbidv 2987 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4313, 42raleqbidv 2987 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( A. x  e.  X  A. y  e.  X  (
( F  |`  X ) `
 ( x ( +g  `  S ) y ) )  =  ( ( ( F  |`  X ) `  x
) ( +g  `  T
) ( ( F  |`  X ) `  y
) )  <->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) ) )
4436, 43mpbid 215 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) ) )
45 eqid 2471 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
4645subm0cl 16677 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  e.  X
)
4746adantl 473 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  e.  X
)
48 fvres 5893 . . . . 5  |-  ( ( 0g `  S )  e.  X  ->  (
( F  |`  X ) `
 ( 0g `  S ) )  =  ( F `  ( 0g `  S ) ) )
4947, 48syl 17 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( F `
 ( 0g `  S ) ) )
502, 45subm0 16681 . . . . . 6  |-  ( X  e.  (SubMnd `  S
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5150adantl 473 . . . . 5  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( 0g `  S )  =  ( 0g `  U ) )
5251fveq2d 5883 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  S ) )  =  ( ( F  |`  X ) `  ( 0g `  U
) ) )
53 eqid 2471 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
5445, 53mhm0 16668 . . . . 5  |-  ( F  e.  ( S MndHom  T
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5554adantr 472 . . . 4  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
5649, 52, 553eqtr3d 2513 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g
`  T ) )
5715, 44, 563jca 1210 . 2  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( ( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) )
58 eqid 2471 . . 3  |-  ( Base `  U )  =  (
Base `  U )
59 eqid 2471 . . 3  |-  ( +g  `  U )  =  ( +g  `  U )
60 eqid 2471 . . 3  |-  ( 0g
`  U )  =  ( 0g `  U
)
6158, 6, 59, 23, 60, 53ismhm 16662 . 2  |-  ( ( F  |`  X )  e.  ( U MndHom  T )  <-> 
( ( U  e. 
Mnd  /\  T  e.  Mnd )  /\  (
( F  |`  X ) : ( Base `  U
) --> ( Base `  T
)  /\  A. x  e.  ( Base `  U
) A. y  e.  ( Base `  U
) ( ( F  |`  X ) `  (
x ( +g  `  U
) y ) )  =  ( ( ( F  |`  X ) `  x ) ( +g  `  T ) ( ( F  |`  X ) `  y ) )  /\  ( ( F  |`  X ) `  ( 0g `  U ) )  =  ( 0g `  T ) ) ) )
624, 57, 61sylanbrc 677 1  |-  ( ( F  e.  ( S MndHom  T )  /\  X  e.  (SubMnd `  S )
)  ->  ( F  |`  X )  e.  ( U MndHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756    C_ wss 3390    |` cres 4841   -->wf 5585   ` cfv 5589  (class class class)co 6308   Basecbs 15199   ↾s cress 15200   +g cplusg 15268   0gc0g 15416   Mndcmnd 16613   MndHom cmhm 16658  SubMndcsubmnd 16659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-0g 15418  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-mhm 16660  df-submnd 16661
This theorem is referenced by:  resrhm  18115  dchrghm  24263
  Copyright terms: Public domain W3C validator