MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resixp Unicode version

Theorem resixp 7056
Description: Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
Assertion
Ref Expression
resixp  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  e.  X_ x  e.  B  C )
Distinct variable groups:    x, A    x, B    x, F
Allowed substitution hint:    C( x)

Proof of Theorem resixp
StepHypRef Expression
1 resexg 5144 . . 3  |-  ( F  e.  X_ x  e.  A  C  ->  ( F  |`  B )  e.  _V )
21adantl 453 . 2  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  e.  _V )
3 simpr 448 . . . . 5  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  F  e.  X_ x  e.  A  C )
4 elixp2 7025 . . . . 5  |-  ( F  e.  X_ x  e.  A  C 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  C ) )
53, 4sylib 189 . . . 4  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  C ) )
65simp2d 970 . . 3  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  F  Fn  A )
7 simpl 444 . . 3  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  B  C_  A )
8 fnssres 5517 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F  |`  B )  Fn  B )
96, 7, 8syl2anc 643 . 2  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  Fn  B )
105simp3d 971 . . . 4  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  A. x  e.  A  ( F `  x )  e.  C )
11 ssralv 3367 . . . 4  |-  ( B 
C_  A  ->  ( A. x  e.  A  ( F `  x )  e.  C  ->  A. x  e.  B  ( F `  x )  e.  C
) )
127, 10, 11sylc 58 . . 3  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  A. x  e.  B  ( F `  x )  e.  C )
13 fvres 5704 . . . . 5  |-  ( x  e.  B  ->  (
( F  |`  B ) `
 x )  =  ( F `  x
) )
1413eleq1d 2470 . . . 4  |-  ( x  e.  B  ->  (
( ( F  |`  B ) `  x
)  e.  C  <->  ( F `  x )  e.  C
) )
1514ralbiia 2698 . . 3  |-  ( A. x  e.  B  (
( F  |`  B ) `
 x )  e.  C  <->  A. x  e.  B  ( F `  x )  e.  C )
1612, 15sylibr 204 . 2  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  ->  A. x  e.  B  ( ( F  |`  B ) `  x
)  e.  C )
17 elixp2 7025 . 2  |-  ( ( F  |`  B )  e.  X_ x  e.  B  C 
<->  ( ( F  |`  B )  e.  _V  /\  ( F  |`  B )  Fn  B  /\  A. x  e.  B  (
( F  |`  B ) `
 x )  e.  C ) )
182, 9, 16, 17syl3anbrc 1138 1  |-  ( ( B  C_  A  /\  F  e.  X_ x  e.  A  C )  -> 
( F  |`  B )  e.  X_ x  e.  B  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1721   A.wral 2666   _Vcvv 2916    C_ wss 3280    |` cres 4839    Fn wfn 5408   ` cfv 5413   X_cixp 7022
This theorem is referenced by:  resixpfo  7059  ixpfi2  7363  ptrescn  17624  ptuncnv  17792  ptcmplem2  18037
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-res 4849  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421  df-ixp 7023
  Copyright terms: Public domain W3C validator