MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resiun1 Structured version   Visualization version   Unicode version

Theorem resiun1 5129
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun1  |-  ( U_ x  e.  A  B  |`  C )  =  U_ x  e.  A  ( B  |`  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem resiun1
StepHypRef Expression
1 iunin2 4333 . 2  |-  U_ x  e.  A  ( ( C  X.  _V )  i^i 
B )  =  ( ( C  X.  _V )  i^i  U_ x  e.  A  B )
2 df-res 4851 . . . . 5  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
3 incom 3616 . . . . 5  |-  ( B  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  B )
42, 3eqtri 2493 . . . 4  |-  ( B  |`  C )  =  ( ( C  X.  _V )  i^i  B )
54a1i 11 . . 3  |-  ( x  e.  A  ->  ( B  |`  C )  =  ( ( C  X.  _V )  i^i  B ) )
65iuneq2i 4288 . 2  |-  U_ x  e.  A  ( B  |`  C )  =  U_ x  e.  A  (
( C  X.  _V )  i^i  B )
7 df-res 4851 . . 3  |-  ( U_ x  e.  A  B  |`  C )  =  (
U_ x  e.  A  B  i^i  ( C  X.  _V ) )
8 incom 3616 . . 3  |-  ( U_ x  e.  A  B  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  U_ x  e.  A  B )
97, 8eqtri 2493 . 2  |-  ( U_ x  e.  A  B  |`  C )  =  ( ( C  X.  _V )  i^i  U_ x  e.  A  B )
101, 6, 93eqtr4ri 2504 1  |-  ( U_ x  e.  A  B  |`  C )  =  U_ x  e.  A  ( B  |`  C )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1452    e. wcel 1904   _Vcvv 3031    i^i cin 3389   U_ciun 4269    X. cxp 4837    |` cres 4841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-v 3033  df-in 3397  df-ss 3404  df-iun 4271  df-res 4851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator