MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinf1o Structured version   Unicode version

Theorem resinf1o 23427
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
resinf1o  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 )

Proof of Theorem resinf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recosf1o 23426 . . 3  |-  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -1-1-onto-> (
-u 1 [,] 1
)
2 eqid 2428 . . . . 5  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) )  =  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) )
3 halfpire 23361 . . . . . . . 8  |-  ( pi 
/  2 )  e.  RR
4 neghalfpire 23362 . . . . . . . . . 10  |-  -u (
pi  /  2 )  e.  RR
5 iccssre 11667 . . . . . . . . . 10  |-  ( (
-u ( pi  / 
2 )  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  C_  RR )
64, 3, 5mp2an 676 . . . . . . . . 9  |-  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
C_  RR
76sseli 3403 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  x  e.  RR )
8 resubcl 9889 . . . . . . . 8  |-  ( ( ( pi  /  2
)  e.  RR  /\  x  e.  RR )  ->  ( ( pi  / 
2 )  -  x
)  e.  RR )
93, 7, 8sylancr 667 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  x
)  e.  RR )
104, 3elicc2i 11651 . . . . . . . . 9  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  <->  ( x  e.  RR  /\  -u (
pi  /  2 )  <_  x  /\  x  <_  ( pi  /  2
) ) )
1110simp3bi 1022 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  x  <_  ( pi  / 
2 ) )
12 subge0 10078 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  RR  /\  x  e.  RR )  ->  ( 0  <_  (
( pi  /  2
)  -  x )  <-> 
x  <_  ( pi  /  2 ) ) )
133, 7, 12sylancr 667 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( 0  <_  (
( pi  /  2
)  -  x )  <-> 
x  <_  ( pi  /  2 ) ) )
1411, 13mpbird 235 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
0  <_  ( (
pi  /  2 )  -  x ) )
153recni 9606 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  CC
16 picn 23356 . . . . . . . . . 10  |-  pi  e.  CC
1715negcli 9893 . . . . . . . . . 10  |-  -u (
pi  /  2 )  e.  CC
1816, 15negsubi 9903 . . . . . . . . . . 11  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
19 pidiv2halves 23364 . . . . . . . . . . . 12  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
2016, 15, 15, 19subaddrii 9915 . . . . . . . . . . 11  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
2118, 20eqtri 2450 . . . . . . . . . 10  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
2215, 16, 17, 21subaddrii 9915 . . . . . . . . 9  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
2310simp2bi 1021 . . . . . . . . 9  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  -u ( pi  /  2
)  <_  x )
2422, 23syl5eqbr 4400 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  pi )  <_  x )
25 pire 23355 . . . . . . . . . 10  |-  pi  e.  RR
26 suble 10043 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR  /\  x  e.  RR )  ->  (
( ( pi  / 
2 )  -  pi )  <_  x  <->  ( (
pi  /  2 )  -  x )  <_  pi ) )
273, 25, 26mp3an12 1350 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( ( pi  / 
2 )  -  pi )  <_  x  <->  ( (
pi  /  2 )  -  x )  <_  pi ) )
287, 27syl 17 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( ( pi 
/  2 )  -  pi )  <_  x  <->  ( (
pi  /  2 )  -  x )  <_  pi ) )
2924, 28mpbid 213 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  x
)  <_  pi )
30 0re 9594 . . . . . . . 8  |-  0  e.  RR
3130, 25elicc2i 11651 . . . . . . 7  |-  ( ( ( pi  /  2
)  -  x )  e.  ( 0 [,] pi )  <->  ( (
( pi  /  2
)  -  x )  e.  RR  /\  0  <_  ( ( pi  / 
2 )  -  x
)  /\  ( (
pi  /  2 )  -  x )  <_  pi ) )
329, 14, 29, 31syl3anbrc 1189 . . . . . 6  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  x
)  e.  ( 0 [,] pi ) )
3332adantl 467 . . . . 5  |-  ( ( T.  /\  x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  -> 
( ( pi  / 
2 )  -  x
)  e.  ( 0 [,] pi ) )
3430, 25elicc2i 11651 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] pi )  <->  ( y  e.  RR  /\  0  <_ 
y  /\  y  <_  pi ) )
3534simp1bi 1020 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  y  e.  RR )
36 resubcl 9889 . . . . . . . 8  |-  ( ( ( pi  /  2
)  e.  RR  /\  y  e.  RR )  ->  ( ( pi  / 
2 )  -  y
)  e.  RR )
373, 35, 36sylancr 667 . . . . . . 7  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  y )  e.  RR )
3834simp3bi 1022 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] pi )  ->  y  <_  pi )
3915, 15subnegi 9904 . . . . . . . . . 10  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  ( ( pi  / 
2 )  +  ( pi  /  2 ) )
4039, 19eqtri 2450 . . . . . . . . 9  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  pi
4138, 40syl6breqr 4407 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  y  <_  ( ( pi  / 
2 )  -  -u (
pi  /  2 ) ) )
42 lesub 10044 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  -u ( pi  /  2
)  e.  RR )  ->  ( y  <_ 
( ( pi  / 
2 )  -  -u (
pi  /  2 ) )  <->  -u ( pi  / 
2 )  <_  (
( pi  /  2
)  -  y ) ) )
433, 4, 42mp3an23 1352 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  <_  ( (
pi  /  2 )  -  -u ( pi  / 
2 ) )  <->  -u ( pi 
/  2 )  <_ 
( ( pi  / 
2 )  -  y
) ) )
4435, 43syl 17 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  (
y  <_  ( (
pi  /  2 )  -  -u ( pi  / 
2 ) )  <->  -u ( pi 
/  2 )  <_ 
( ( pi  / 
2 )  -  y
) ) )
4541, 44mpbid 213 . . . . . . 7  |-  ( y  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  <_  ( ( pi 
/  2 )  -  y ) )
4615subidi 9896 . . . . . . . . 9  |-  ( ( pi  /  2 )  -  ( pi  / 
2 ) )  =  0
4734simp2bi 1021 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] pi )  ->  0  <_  y )
4846, 47syl5eqbr 4400 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  ( pi 
/  2 ) )  <_  y )
49 suble 10043 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  y  e.  RR )  ->  ( ( ( pi 
/  2 )  -  ( pi  /  2
) )  <_  y  <->  ( ( pi  /  2
)  -  y )  <_  ( pi  / 
2 ) ) )
503, 3, 49mp3an12 1350 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
( ( pi  / 
2 )  -  (
pi  /  2 ) )  <_  y  <->  ( (
pi  /  2 )  -  y )  <_ 
( pi  /  2
) ) )
5135, 50syl 17 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  (
( ( pi  / 
2 )  -  (
pi  /  2 ) )  <_  y  <->  ( (
pi  /  2 )  -  y )  <_ 
( pi  /  2
) ) )
5248, 51mpbid 213 . . . . . . 7  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  y )  <_  ( pi  / 
2 ) )
534, 3elicc2i 11651 . . . . . . 7  |-  ( ( ( pi  /  2
)  -  y )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  <->  ( (
( pi  /  2
)  -  y )  e.  RR  /\  -u (
pi  /  2 )  <_  ( ( pi 
/  2 )  -  y )  /\  (
( pi  /  2
)  -  y )  <_  ( pi  / 
2 ) ) )
5437, 45, 52, 53syl3anbrc 1189 . . . . . 6  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  y )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
5554adantl 467 . . . . 5  |-  ( ( T.  /\  y  e.  ( 0 [,] pi ) )  ->  (
( pi  /  2
)  -  y )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
56 iccssre 11667 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
5730, 25, 56mp2an 676 . . . . . . . . . 10  |-  ( 0 [,] pi )  C_  RR
58 ax-resscn 9547 . . . . . . . . . 10  |-  RR  C_  CC
5957, 58sstri 3416 . . . . . . . . 9  |-  ( 0 [,] pi )  C_  CC
6059sseli 3403 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  y  e.  CC )
616, 58sstri 3416 . . . . . . . . 9  |-  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
C_  CC
6261sseli 3403 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  x  e.  CC )
63 subsub23 9831 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( ( pi  / 
2 )  -  y
)  =  x  <->  ( (
pi  /  2 )  -  x )  =  y ) )
6415, 63mp3an1 1347 . . . . . . . 8  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( ( ( pi 
/  2 )  -  y )  =  x  <-> 
( ( pi  / 
2 )  -  x
)  =  y ) )
6560, 62, 64syl2anr 480 . . . . . . 7  |-  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )  /\  y  e.  ( 0 [,] pi ) )  ->  ( (
( pi  /  2
)  -  y )  =  x  <->  ( (
pi  /  2 )  -  x )  =  y ) )
6665adantl 467 . . . . . 6  |-  ( ( T.  /\  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  /\  y  e.  ( 0 [,] pi ) ) )  ->  ( (
( pi  /  2
)  -  y )  =  x  <->  ( (
pi  /  2 )  -  x )  =  y ) )
67 eqcom 2435 . . . . . 6  |-  ( x  =  ( ( pi 
/  2 )  -  y )  <->  ( (
pi  /  2 )  -  y )  =  x )
68 eqcom 2435 . . . . . 6  |-  ( y  =  ( ( pi 
/  2 )  -  x )  <->  ( (
pi  /  2 )  -  x )  =  y )
6966, 67, 683bitr4g 291 . . . . 5  |-  ( ( T.  /\  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  /\  y  e.  ( 0 [,] pi ) ) )  ->  ( x  =  ( ( pi 
/  2 )  -  y )  <->  y  =  ( ( pi  / 
2 )  -  x
) ) )
702, 33, 55, 69f1o2d 6479 . . . 4  |-  ( T. 
->  ( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( 0 [,] pi ) )
7170trud 1446 . . 3  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> ( 0 [,] pi )
72 f1oco 5796 . . 3  |-  ( ( ( cos  |`  (
0 [,] pi ) ) : ( 0 [,] pi ) -1-1-onto-> ( -u
1 [,] 1 )  /\  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) : ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) -1-1-onto-> ( 0 [,] pi ) )  ->  ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 ) )
731, 71, 72mp2an 676 . 2  |-  ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> (
-u 1 [,] 1
)
74 cosf 14122 . . . . . . . 8  |-  cos : CC
--> CC
75 ffn 5689 . . . . . . . 8  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
7674, 75ax-mp 5 . . . . . . 7  |-  cos  Fn  CC
77 fnssres 5650 . . . . . . 7  |-  ( ( cos  Fn  CC  /\  ( 0 [,] pi )  C_  CC )  -> 
( cos  |`  ( 0 [,] pi ) )  Fn  ( 0 [,] pi ) )
7876, 59, 77mp2an 676 . . . . . 6  |-  ( cos  |`  ( 0 [,] pi ) )  Fn  (
0 [,] pi )
792, 32fmpti 6004 . . . . . 6  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) --> ( 0 [,] pi )
80 fnfco 5708 . . . . . 6  |-  ( ( ( cos  |`  (
0 [,] pi ) )  Fn  ( 0 [,] pi )  /\  ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) : (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) --> ( 0 [,] pi ) )  -> 
( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )
8178, 79, 80mp2an 676 . . . . 5  |-  ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )
82 sinf 14121 . . . . . . 7  |-  sin : CC
--> CC
83 ffn 5689 . . . . . . 7  |-  ( sin
: CC --> CC  ->  sin 
Fn  CC )
8482, 83ax-mp 5 . . . . . 6  |-  sin  Fn  CC
85 fnssres 5650 . . . . . 6  |-  ( ( sin  Fn  CC  /\  ( -u ( pi  / 
2 ) [,] (
pi  /  2 ) )  C_  CC )  ->  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )
8684, 61, 85mp2an 676 . . . . 5  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  Fn  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )
87 eqfnfv 5935 . . . . 5  |-  ( ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )  /\  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )  ->  ( (
( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) )  =  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  <->  A. y  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) ) `  y
)  =  ( ( sin  |`  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) ) `
 y ) ) )
8881, 86, 87mp2an 676 . . . 4  |-  ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  =  ( sin  |`  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )  <->  A. y  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ( ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) `  y )  =  ( ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) `  y ) )
8979ffvelrni 5980 . . . . . . 7  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) `
 y )  e.  ( 0 [,] pi ) )
90 fvres 5839 . . . . . . 7  |-  ( ( ( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y )  e.  ( 0 [,] pi )  ->  ( ( cos  |`  ( 0 [,] pi ) ) `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) )  =  ( cos `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) ) )
9189, 90syl 17 . . . . . 6  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( cos  |`  (
0 [,] pi ) ) `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) )  =  ( cos `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) ) )
92 oveq2 6257 . . . . . . . 8  |-  ( x  =  y  ->  (
( pi  /  2
)  -  x )  =  ( ( pi 
/  2 )  -  y ) )
93 ovex 6277 . . . . . . . 8  |-  ( ( pi  /  2 )  -  y )  e. 
_V
9492, 2, 93fvmpt 5908 . . . . . . 7  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) `
 y )  =  ( ( pi  / 
2 )  -  y
) )
9594fveq2d 5829 . . . . . 6  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( cos `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) )  =  ( cos `  (
( pi  /  2
)  -  y ) ) )
9661sseli 3403 . . . . . . 7  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
y  e.  CC )
97 coshalfpim 23392 . . . . . . 7  |-  ( y  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  -  y ) )  =  ( sin `  y
) )
9896, 97syl 17 . . . . . 6  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( cos `  (
( pi  /  2
)  -  y ) )  =  ( sin `  y ) )
9991, 95, 983eqtrd 2466 . . . . 5  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( cos  |`  (
0 [,] pi ) ) `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) )  =  ( sin `  y ) )
100 fvco3 5902 . . . . . 6  |-  ( ( ( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) --> ( 0 [,] pi )  /\  y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )  ->  ( ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) ) `  y )  =  ( ( cos  |`  ( 0 [,] pi ) ) `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) ) )
10179, 100mpan 674 . . . . 5  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) `  y )  =  ( ( cos  |`  (
0 [,] pi ) ) `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) ) )
102 fvres 5839 . . . . 5  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) `  y )  =  ( sin `  y
) )
10399, 101, 1023eqtr4d 2472 . . . 4  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) `  y )  =  ( ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) `  y ) )
10488, 103mprgbir 2729 . . 3  |-  ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) )  =  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
105 f1oeq1 5765 . . 3  |-  ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  =  ( sin  |`  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )  ->  ( ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> (
-u 1 [,] 1
)  <->  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> (
-u 1 [,] 1
) ) )
106104, 105ax-mp 5 . 2  |-  ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) ) : (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) -1-1-onto-> ( -u 1 [,] 1 )  <->  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 ) )
10773, 106mpbi 211 1  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437   T. wtru 1438    e. wcel 1872   A.wral 2714    C_ wss 3379   class class class wbr 4366    |-> cmpt 4425    |` cres 4798    o. ccom 4800    Fn wfn 5539   -->wf 5540   -1-1-onto->wf1o 5543   ` cfv 5544  (class class class)co 6249   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    <_ cle 9627    - cmin 9811   -ucneg 9812    / cdiv 10220   2c2 10610   [,]cicc 11589   sincsin 14059   cosccos 14060   picpi 14062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-addf 9569  ax-mulf 9570
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-supp 6870  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-er 7318  df-map 7429  df-pm 7430  df-ixp 7478  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fsupp 7837  df-fi 7878  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-10 10627  df-n0 10821  df-z 10889  df-dec 11003  df-uz 11111  df-q 11216  df-rp 11254  df-xneg 11360  df-xadd 11361  df-xmul 11362  df-ioo 11590  df-ioc 11591  df-ico 11592  df-icc 11593  df-fz 11736  df-fzo 11867  df-fl 11978  df-seq 12164  df-exp 12223  df-fac 12410  df-bc 12438  df-hash 12466  df-shft 13074  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-limsup 13469  df-clim 13495  df-rlim 13496  df-sum 13696  df-ef 14064  df-sin 14066  df-cos 14067  df-pi 14069  df-struct 15066  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-mulr 15147  df-starv 15148  df-sca 15149  df-vsca 15150  df-ip 15151  df-tset 15152  df-ple 15153  df-ds 15155  df-unif 15156  df-hom 15157  df-cco 15158  df-rest 15264  df-topn 15265  df-0g 15283  df-gsum 15284  df-topgen 15285  df-pt 15286  df-prds 15289  df-xrs 15343  df-qtop 15349  df-imas 15350  df-xps 15353  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-submnd 16526  df-mulg 16619  df-cntz 16914  df-cmn 17375  df-psmet 18905  df-xmet 18906  df-met 18907  df-bl 18908  df-mopn 18909  df-fbas 18910  df-fg 18911  df-cnfld 18914  df-top 19863  df-bases 19864  df-topon 19865  df-topsp 19866  df-cld 19976  df-ntr 19977  df-cls 19978  df-nei 20056  df-lp 20094  df-perf 20095  df-cn 20185  df-cnp 20186  df-haus 20273  df-tx 20519  df-hmeo 20712  df-fil 20803  df-fm 20895  df-flim 20896  df-flf 20897  df-xms 21277  df-ms 21278  df-tms 21279  df-cncf 21852  df-limc 22763  df-dv 22764
This theorem is referenced by:  efif1olem4  23436  asinrebnd  23769
  Copyright terms: Public domain W3C validator