MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resinf1o Structured version   Unicode version

Theorem resinf1o 22684
Description: The sine function is a bijection when restricted to its principal domain. (Contributed by Mario Carneiro, 12-May-2014.)
Assertion
Ref Expression
resinf1o  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 )

Proof of Theorem resinf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recosf1o 22683 . . 3  |-  ( cos  |`  ( 0 [,] pi ) ) : ( 0 [,] pi ) -1-1-onto-> (
-u 1 [,] 1
)
2 eqid 2467 . . . . 5  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) )  =  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) )
3 halfpire 22618 . . . . . . . 8  |-  ( pi 
/  2 )  e.  RR
4 neghalfpire 22619 . . . . . . . . . 10  |-  -u (
pi  /  2 )  e.  RR
5 iccssre 11606 . . . . . . . . . 10  |-  ( (
-u ( pi  / 
2 )  e.  RR  /\  ( pi  /  2
)  e.  RR )  ->  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  C_  RR )
64, 3, 5mp2an 672 . . . . . . . . 9  |-  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
C_  RR
76sseli 3500 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  x  e.  RR )
8 resubcl 9883 . . . . . . . 8  |-  ( ( ( pi  /  2
)  e.  RR  /\  x  e.  RR )  ->  ( ( pi  / 
2 )  -  x
)  e.  RR )
93, 7, 8sylancr 663 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  x
)  e.  RR )
104, 3elicc2i 11590 . . . . . . . . 9  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  <->  ( x  e.  RR  /\  -u (
pi  /  2 )  <_  x  /\  x  <_  ( pi  /  2
) ) )
1110simp3bi 1013 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  x  <_  ( pi  / 
2 ) )
12 subge0 10065 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  RR  /\  x  e.  RR )  ->  ( 0  <_  (
( pi  /  2
)  -  x )  <-> 
x  <_  ( pi  /  2 ) ) )
133, 7, 12sylancr 663 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( 0  <_  (
( pi  /  2
)  -  x )  <-> 
x  <_  ( pi  /  2 ) ) )
1411, 13mpbird 232 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
0  <_  ( (
pi  /  2 )  -  x ) )
153recni 9608 . . . . . . . . . 10  |-  ( pi 
/  2 )  e.  CC
16 picn 22614 . . . . . . . . . 10  |-  pi  e.  CC
1715negcli 9887 . . . . . . . . . 10  |-  -u (
pi  /  2 )  e.  CC
1816, 15negsubi 9897 . . . . . . . . . . 11  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  -  (
pi  /  2 ) )
19 pidiv2halves 22621 . . . . . . . . . . . 12  |-  ( ( pi  /  2 )  +  ( pi  / 
2 ) )  =  pi
2016, 15, 15, 19subaddrii 9908 . . . . . . . . . . 11  |-  ( pi 
-  ( pi  / 
2 ) )  =  ( pi  /  2
)
2118, 20eqtri 2496 . . . . . . . . . 10  |-  ( pi  +  -u ( pi  / 
2 ) )  =  ( pi  /  2
)
2215, 16, 17, 21subaddrii 9908 . . . . . . . . 9  |-  ( ( pi  /  2 )  -  pi )  = 
-u ( pi  / 
2 )
2310simp2bi 1012 . . . . . . . . 9  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  -u ( pi  /  2
)  <_  x )
2422, 23syl5eqbr 4480 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  pi )  <_  x )
25 pire 22613 . . . . . . . . . 10  |-  pi  e.  RR
26 suble 10030 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  RR  /\  pi  e.  RR  /\  x  e.  RR )  ->  (
( ( pi  / 
2 )  -  pi )  <_  x  <->  ( (
pi  /  2 )  -  x )  <_  pi ) )
273, 25, 26mp3an12 1314 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( ( pi  / 
2 )  -  pi )  <_  x  <->  ( (
pi  /  2 )  -  x )  <_  pi ) )
287, 27syl 16 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( ( pi 
/  2 )  -  pi )  <_  x  <->  ( (
pi  /  2 )  -  x )  <_  pi ) )
2924, 28mpbid 210 . . . . . . 7  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  x
)  <_  pi )
30 0re 9596 . . . . . . . 8  |-  0  e.  RR
3130, 25elicc2i 11590 . . . . . . 7  |-  ( ( ( pi  /  2
)  -  x )  e.  ( 0 [,] pi )  <->  ( (
( pi  /  2
)  -  x )  e.  RR  /\  0  <_  ( ( pi  / 
2 )  -  x
)  /\  ( (
pi  /  2 )  -  x )  <_  pi ) )
329, 14, 29, 31syl3anbrc 1180 . . . . . 6  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( pi  / 
2 )  -  x
)  e.  ( 0 [,] pi ) )
3332adantl 466 . . . . 5  |-  ( ( T.  /\  x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  -> 
( ( pi  / 
2 )  -  x
)  e.  ( 0 [,] pi ) )
3430, 25elicc2i 11590 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] pi )  <->  ( y  e.  RR  /\  0  <_ 
y  /\  y  <_  pi ) )
3534simp1bi 1011 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  y  e.  RR )
36 resubcl 9883 . . . . . . . 8  |-  ( ( ( pi  /  2
)  e.  RR  /\  y  e.  RR )  ->  ( ( pi  / 
2 )  -  y
)  e.  RR )
373, 35, 36sylancr 663 . . . . . . 7  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  y )  e.  RR )
3834simp3bi 1013 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] pi )  ->  y  <_  pi )
3915, 15subnegi 9898 . . . . . . . . . 10  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  ( ( pi  / 
2 )  +  ( pi  /  2 ) )
4039, 19eqtri 2496 . . . . . . . . 9  |-  ( ( pi  /  2 )  -  -u ( pi  / 
2 ) )  =  pi
4138, 40syl6breqr 4487 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  y  <_  ( ( pi  / 
2 )  -  -u (
pi  /  2 ) ) )
42 lesub 10031 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  -u ( pi  /  2
)  e.  RR )  ->  ( y  <_ 
( ( pi  / 
2 )  -  -u (
pi  /  2 ) )  <->  -u ( pi  / 
2 )  <_  (
( pi  /  2
)  -  y ) ) )
433, 4, 42mp3an23 1316 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
y  <_  ( (
pi  /  2 )  -  -u ( pi  / 
2 ) )  <->  -u ( pi 
/  2 )  <_ 
( ( pi  / 
2 )  -  y
) ) )
4435, 43syl 16 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  (
y  <_  ( (
pi  /  2 )  -  -u ( pi  / 
2 ) )  <->  -u ( pi 
/  2 )  <_ 
( ( pi  / 
2 )  -  y
) ) )
4541, 44mpbid 210 . . . . . . 7  |-  ( y  e.  ( 0 [,] pi )  ->  -u (
pi  /  2 )  <_  ( ( pi 
/  2 )  -  y ) )
4615subidi 9890 . . . . . . . . 9  |-  ( ( pi  /  2 )  -  ( pi  / 
2 ) )  =  0
4734simp2bi 1012 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] pi )  ->  0  <_  y )
4846, 47syl5eqbr 4480 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  ( pi 
/  2 ) )  <_  y )
49 suble 10030 . . . . . . . . . 10  |-  ( ( ( pi  /  2
)  e.  RR  /\  ( pi  /  2
)  e.  RR  /\  y  e.  RR )  ->  ( ( ( pi 
/  2 )  -  ( pi  /  2
) )  <_  y  <->  ( ( pi  /  2
)  -  y )  <_  ( pi  / 
2 ) ) )
503, 3, 49mp3an12 1314 . . . . . . . . 9  |-  ( y  e.  RR  ->  (
( ( pi  / 
2 )  -  (
pi  /  2 ) )  <_  y  <->  ( (
pi  /  2 )  -  y )  <_ 
( pi  /  2
) ) )
5135, 50syl 16 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  (
( ( pi  / 
2 )  -  (
pi  /  2 ) )  <_  y  <->  ( (
pi  /  2 )  -  y )  <_ 
( pi  /  2
) ) )
5248, 51mpbid 210 . . . . . . 7  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  y )  <_  ( pi  / 
2 ) )
534, 3elicc2i 11590 . . . . . . 7  |-  ( ( ( pi  /  2
)  -  y )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  <->  ( (
( pi  /  2
)  -  y )  e.  RR  /\  -u (
pi  /  2 )  <_  ( ( pi 
/  2 )  -  y )  /\  (
( pi  /  2
)  -  y )  <_  ( pi  / 
2 ) ) )
5437, 45, 52, 53syl3anbrc 1180 . . . . . 6  |-  ( y  e.  ( 0 [,] pi )  ->  (
( pi  /  2
)  -  y )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
5554adantl 466 . . . . 5  |-  ( ( T.  /\  y  e.  ( 0 [,] pi ) )  ->  (
( pi  /  2
)  -  y )  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )
56 iccssre 11606 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  pi  e.  RR )  -> 
( 0 [,] pi )  C_  RR )
5730, 25, 56mp2an 672 . . . . . . . . . 10  |-  ( 0 [,] pi )  C_  RR
58 ax-resscn 9549 . . . . . . . . . 10  |-  RR  C_  CC
5957, 58sstri 3513 . . . . . . . . 9  |-  ( 0 [,] pi )  C_  CC
6059sseli 3500 . . . . . . . 8  |-  ( y  e.  ( 0 [,] pi )  ->  y  e.  CC )
616, 58sstri 3513 . . . . . . . . 9  |-  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
C_  CC
6261sseli 3500 . . . . . . . 8  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  ->  x  e.  CC )
63 subsub23 9825 . . . . . . . . 9  |-  ( ( ( pi  /  2
)  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( ( pi  / 
2 )  -  y
)  =  x  <->  ( (
pi  /  2 )  -  x )  =  y ) )
6415, 63mp3an1 1311 . . . . . . . 8  |-  ( ( y  e.  CC  /\  x  e.  CC )  ->  ( ( ( pi 
/  2 )  -  y )  =  x  <-> 
( ( pi  / 
2 )  -  x
)  =  y ) )
6560, 62, 64syl2anr 478 . . . . . . 7  |-  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )  /\  y  e.  ( 0 [,] pi ) )  ->  ( (
( pi  /  2
)  -  y )  =  x  <->  ( (
pi  /  2 )  -  x )  =  y ) )
6665adantl 466 . . . . . 6  |-  ( ( T.  /\  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  /\  y  e.  ( 0 [,] pi ) ) )  ->  ( (
( pi  /  2
)  -  y )  =  x  <->  ( (
pi  /  2 )  -  x )  =  y ) )
67 eqcom 2476 . . . . . 6  |-  ( x  =  ( ( pi 
/  2 )  -  y )  <->  ( (
pi  /  2 )  -  y )  =  x )
68 eqcom 2476 . . . . . 6  |-  ( y  =  ( ( pi 
/  2 )  -  x )  <->  ( (
pi  /  2 )  -  x )  =  y )
6966, 67, 683bitr4g 288 . . . . 5  |-  ( ( T.  /\  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  /\  y  e.  ( 0 [,] pi ) ) )  ->  ( x  =  ( ( pi 
/  2 )  -  y )  <->  y  =  ( ( pi  / 
2 )  -  x
) ) )
702, 33, 55, 69f1o2d 6511 . . . 4  |-  ( T. 
->  ( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( 0 [,] pi ) )
7170trud 1388 . . 3  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> ( 0 [,] pi )
72 f1oco 5838 . . 3  |-  ( ( ( cos  |`  (
0 [,] pi ) ) : ( 0 [,] pi ) -1-1-onto-> ( -u
1 [,] 1 )  /\  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) : ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) -1-1-onto-> ( 0 [,] pi ) )  ->  ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 ) )
731, 71, 72mp2an 672 . 2  |-  ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> (
-u 1 [,] 1
)
74 cosf 13721 . . . . . . . 8  |-  cos : CC
--> CC
75 ffn 5731 . . . . . . . 8  |-  ( cos
: CC --> CC  ->  cos 
Fn  CC )
7674, 75ax-mp 5 . . . . . . 7  |-  cos  Fn  CC
77 fnssres 5694 . . . . . . 7  |-  ( ( cos  Fn  CC  /\  ( 0 [,] pi )  C_  CC )  -> 
( cos  |`  ( 0 [,] pi ) )  Fn  ( 0 [,] pi ) )
7876, 59, 77mp2an 672 . . . . . 6  |-  ( cos  |`  ( 0 [,] pi ) )  Fn  (
0 [,] pi )
792, 32fmpti 6044 . . . . . 6  |-  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) --> ( 0 [,] pi )
80 fnfco 5750 . . . . . 6  |-  ( ( ( cos  |`  (
0 [,] pi ) )  Fn  ( 0 [,] pi )  /\  ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) : (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) --> ( 0 [,] pi ) )  -> 
( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )
8178, 79, 80mp2an 672 . . . . 5  |-  ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )
82 sinf 13720 . . . . . . 7  |-  sin : CC
--> CC
83 ffn 5731 . . . . . . 7  |-  ( sin
: CC --> CC  ->  sin 
Fn  CC )
8482, 83ax-mp 5 . . . . . 6  |-  sin  Fn  CC
85 fnssres 5694 . . . . . 6  |-  ( ( sin  Fn  CC  /\  ( -u ( pi  / 
2 ) [,] (
pi  /  2 ) )  C_  CC )  ->  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )
8684, 61, 85mp2an 672 . . . . 5  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  Fn  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )
87 eqfnfv 5975 . . . . 5  |-  ( ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) )  /\  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )  Fn  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) )  ->  ( (
( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) )  =  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )  <->  A. y  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) ) `  y
)  =  ( ( sin  |`  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) ) `
 y ) ) )
8881, 86, 87mp2an 672 . . . 4  |-  ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  =  ( sin  |`  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )  <->  A. y  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ( ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) `  y )  =  ( ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) `  y ) )
8979ffvelrni 6020 . . . . . . 7  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) `
 y )  e.  ( 0 [,] pi ) )
90 fvres 5880 . . . . . . 7  |-  ( ( ( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y )  e.  ( 0 [,] pi )  ->  ( ( cos  |`  ( 0 [,] pi ) ) `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) )  =  ( cos `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) ) )
9189, 90syl 16 . . . . . 6  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( cos  |`  (
0 [,] pi ) ) `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) )  =  ( cos `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) ) )
92 oveq2 6292 . . . . . . . 8  |-  ( x  =  y  ->  (
( pi  /  2
)  -  x )  =  ( ( pi 
/  2 )  -  y ) )
93 ovex 6309 . . . . . . . 8  |-  ( ( pi  /  2 )  -  y )  e. 
_V
9492, 2, 93fvmpt 5950 . . . . . . 7  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) `
 y )  =  ( ( pi  / 
2 )  -  y
) )
9594fveq2d 5870 . . . . . 6  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( cos `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) )  =  ( cos `  (
( pi  /  2
)  -  y ) ) )
9661sseli 3500 . . . . . . 7  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
y  e.  CC )
97 coshalfpim 22649 . . . . . . 7  |-  ( y  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  -  y ) )  =  ( sin `  y
) )
9896, 97syl 16 . . . . . 6  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( cos `  (
( pi  /  2
)  -  y ) )  =  ( sin `  y ) )
9991, 95, 983eqtrd 2512 . . . . 5  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( cos  |`  (
0 [,] pi ) ) `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) )  =  ( sin `  y ) )
100 fvco3 5944 . . . . . 6  |-  ( ( ( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) --> ( 0 [,] pi )  /\  y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )  ->  ( ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) ) `  y )  =  ( ( cos  |`  ( 0 [,] pi ) ) `  (
( x  e.  (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) )  |->  ( ( pi 
/  2 )  -  x ) ) `  y ) ) )
10179, 100mpan 670 . . . . 5  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) `  y )  =  ( ( cos  |`  (
0 [,] pi ) ) `  ( ( x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) `  y
) ) )
102 fvres 5880 . . . . 5  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) `  y )  =  ( sin `  y
) )
10399, 101, 1023eqtr4d 2518 . . . 4  |-  ( y  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  -> 
( ( ( cos  |`  ( 0 [,] pi ) )  o.  (
x  e.  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) 
|->  ( ( pi  / 
2 )  -  x
) ) ) `  y )  =  ( ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) `  y ) )
10488, 103mprgbir 2828 . . 3  |-  ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) )  =  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) )
105 f1oeq1 5807 . . 3  |-  ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) )  =  ( sin  |`  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) ) )  ->  ( ( ( cos  |`  ( 0 [,] pi ) )  o.  ( x  e.  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) )  |->  ( ( pi  /  2 )  -  x ) ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> (
-u 1 [,] 1
)  <->  ( sin  |`  ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) ) : ( -u ( pi  /  2
) [,] ( pi 
/  2 ) ) -1-1-onto-> (
-u 1 [,] 1
) ) )
106104, 105ax-mp 5 . 2  |-  ( ( ( cos  |`  (
0 [,] pi ) )  o.  ( x  e.  ( -u (
pi  /  2 ) [,] ( pi  / 
2 ) )  |->  ( ( pi  /  2
)  -  x ) ) ) : (
-u ( pi  / 
2 ) [,] (
pi  /  2 ) ) -1-1-onto-> ( -u 1 [,] 1 )  <->  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 ) )
10773, 106mpbi 208 1  |-  ( sin  |`  ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) ) : ( -u ( pi 
/  2 ) [,] ( pi  /  2
) ) -1-1-onto-> ( -u 1 [,] 1 )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379   T. wtru 1380    e. wcel 1767   A.wral 2814    C_ wss 3476   class class class wbr 4447    |-> cmpt 4505    |` cres 5001    o. ccom 5003    Fn wfn 5583   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    <_ cle 9629    - cmin 9805   -ucneg 9806    / cdiv 10206   2c2 10585   [,]cicc 11532   sincsin 13661   cosccos 13662   picpi 13664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-pm 7423  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ioc 11534  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-fl 11897  df-seq 12076  df-exp 12135  df-fac 12322  df-bc 12349  df-hash 12374  df-shft 12863  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-limsup 13257  df-clim 13274  df-rlim 13275  df-sum 13472  df-ef 13665  df-sin 13667  df-cos 13668  df-pi 13670  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-fbas 18215  df-fg 18216  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-ntr 19315  df-cls 19316  df-nei 19393  df-lp 19431  df-perf 19432  df-cn 19522  df-cnp 19523  df-haus 19610  df-tx 19826  df-hmeo 20019  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-xms 20586  df-ms 20587  df-tms 20588  df-cncf 21145  df-limc 22033  df-dv 22034
This theorem is referenced by:  efif1olem4  22693  asinrebnd  22988
  Copyright terms: Public domain W3C validator