MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resgrprn Structured version   Unicode version

Theorem resgrprn 24955
Description: The underlying set of a group operation which is a restriction of a mapping. (Contributed by Paul Chapman, 25-Mar-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
resgrprn.1  |-  H  =  ( G  |`  ( Y  X.  Y ) )
Assertion
Ref Expression
resgrprn  |-  ( ( dom  G  =  ( X  X.  X )  /\  H  e.  GrpOp  /\  Y  C_  X )  ->  Y  =  ran  H
)

Proof of Theorem resgrprn
StepHypRef Expression
1 resgrprn.1 . . . . . 6  |-  H  =  ( G  |`  ( Y  X.  Y ) )
21dmeqi 5202 . . . . 5  |-  dom  H  =  dom  ( G  |`  ( Y  X.  Y
) )
3 xpss12 5106 . . . . . . . 8  |-  ( ( Y  C_  X  /\  Y  C_  X )  -> 
( Y  X.  Y
)  C_  ( X  X.  X ) )
43anidms 645 . . . . . . 7  |-  ( Y 
C_  X  ->  ( Y  X.  Y )  C_  ( X  X.  X
) )
5 sseq2 3526 . . . . . . . 8  |-  ( dom 
G  =  ( X  X.  X )  -> 
( ( Y  X.  Y )  C_  dom  G  <-> 
( Y  X.  Y
)  C_  ( X  X.  X ) ) )
65biimpar 485 . . . . . . 7  |-  ( ( dom  G  =  ( X  X.  X )  /\  ( Y  X.  Y )  C_  ( X  X.  X ) )  ->  ( Y  X.  Y )  C_  dom  G )
74, 6sylan2 474 . . . . . 6  |-  ( ( dom  G  =  ( X  X.  X )  /\  Y  C_  X
)  ->  ( Y  X.  Y )  C_  dom  G )
8 ssdmres 5293 . . . . . 6  |-  ( ( Y  X.  Y ) 
C_  dom  G  <->  dom  ( G  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) )
97, 8sylib 196 . . . . 5  |-  ( ( dom  G  =  ( X  X.  X )  /\  Y  C_  X
)  ->  dom  ( G  |`  ( Y  X.  Y
) )  =  ( Y  X.  Y ) )
102, 9syl5eq 2520 . . . 4  |-  ( ( dom  G  =  ( X  X.  X )  /\  Y  C_  X
)  ->  dom  H  =  ( Y  X.  Y
) )
11103adant2 1015 . . 3  |-  ( ( dom  G  =  ( X  X.  X )  /\  H  e.  GrpOp  /\  Y  C_  X )  ->  dom  H  =  ( Y  X.  Y ) )
12 eqid 2467 . . . . . 6  |-  ran  H  =  ran  H
1312grpofo 24874 . . . . 5  |-  ( H  e.  GrpOp  ->  H :
( ran  H  X.  ran  H ) -onto-> ran  H
)
14 fof 5793 . . . . 5  |-  ( H : ( ran  H  X.  ran  H ) -onto-> ran 
H  ->  H :
( ran  H  X.  ran  H ) --> ran  H
)
15 fdm 5733 . . . . 5  |-  ( H : ( ran  H  X.  ran  H ) --> ran 
H  ->  dom  H  =  ( ran  H  X.  ran  H ) )
1613, 14, 153syl 20 . . . 4  |-  ( H  e.  GrpOp  ->  dom  H  =  ( ran  H  X.  ran  H ) )
17163ad2ant2 1018 . . 3  |-  ( ( dom  G  =  ( X  X.  X )  /\  H  e.  GrpOp  /\  Y  C_  X )  ->  dom  H  =  ( ran  H  X.  ran  H ) )
1811, 17eqtr3d 2510 . 2  |-  ( ( dom  G  =  ( X  X.  X )  /\  H  e.  GrpOp  /\  Y  C_  X )  ->  ( Y  X.  Y
)  =  ( ran 
H  X.  ran  H
) )
19 xpid11 5222 . 2  |-  ( ( Y  X.  Y )  =  ( ran  H  X.  ran  H )  <->  Y  =  ran  H )
2018, 19sylib 196 1  |-  ( ( dom  G  =  ( X  X.  X )  /\  H  e.  GrpOp  /\  Y  C_  X )  ->  Y  =  ran  H
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    C_ wss 3476    X. cxp 4997   dom cdm 4999   ran crn 5000    |` cres 5001   -->wf 5582   -onto->wfo 5584   GrpOpcgr 24861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fo 5592  df-fv 5594  df-ov 6285  df-grpo 24866
This theorem is referenced by:  ghablo  25044  efghgrp  25048
  Copyright terms: Public domain W3C validator