MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resghm Structured version   Unicode version

Theorem resghm 16155
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypothesis
Ref Expression
resghm.u  |-  U  =  ( Ss  X )
Assertion
Ref Expression
resghm  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )

Proof of Theorem resghm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . 2  |-  ( Base `  U )  =  (
Base `  U )
2 eqid 2467 . 2  |-  ( Base `  T )  =  (
Base `  T )
3 eqid 2467 . 2  |-  ( +g  `  U )  =  ( +g  `  U )
4 eqid 2467 . 2  |-  ( +g  `  T )  =  ( +g  `  T )
5 resghm.u . . . 4  |-  U  =  ( Ss  X )
65subggrp 16076 . . 3  |-  ( X  e.  (SubGrp `  S
)  ->  U  e.  Grp )
76adantl 466 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  U  e.  Grp )
8 ghmgrp2 16142 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
98adantr 465 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  T  e.  Grp )
10 eqid 2467 . . . . 5  |-  ( Base `  S )  =  (
Base `  S )
1110, 2ghmf 16143 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
1210subgss 16074 . . . 4  |-  ( X  e.  (SubGrp `  S
)  ->  X  C_  ( Base `  S ) )
13 fssres 5757 . . . 4  |-  ( ( F : ( Base `  S ) --> ( Base `  T )  /\  X  C_  ( Base `  S
) )  ->  ( F  |`  X ) : X --> ( Base `  T
) )
1411, 12, 13syl2an 477 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X ) : X --> ( Base `  T )
)
1512adantl 466 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  X  C_  ( Base `  S ) )
165, 10ressbas2 14563 . . . . 5  |-  ( X 
C_  ( Base `  S
)  ->  X  =  ( Base `  U )
)
1715, 16syl 16 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  X  =  ( Base `  U )
)
1817feq2d 5724 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( ( F  |`  X ) : X --> ( Base `  T
)  <->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
) )
1914, 18mpbid 210 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X ) : (
Base `  U ) --> ( Base `  T )
)
20 eleq2 2540 . . . . . 6  |-  ( X  =  ( Base `  U
)  ->  ( a  e.  X  <->  a  e.  (
Base `  U )
) )
21 eleq2 2540 . . . . . 6  |-  ( X  =  ( Base `  U
)  ->  ( b  e.  X  <->  b  e.  (
Base `  U )
) )
2220, 21anbi12d 710 . . . . 5  |-  ( X  =  ( Base `  U
)  ->  ( (
a  e.  X  /\  b  e.  X )  <->  ( a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) ) )
2317, 22syl 16 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( (
a  e.  X  /\  b  e.  X )  <->  ( a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) ) )
2423biimpar 485 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) )  -> 
( a  e.  X  /\  b  e.  X
) )
25 simpll 753 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  F  e.  ( S  GrpHom  T ) )
2615sselda 3509 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  a  e.  X )  ->  a  e.  ( Base `  S
) )
2726adantrr 716 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  a  e.  ( Base `  S )
)
2815sselda 3509 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  b  e.  X )  ->  b  e.  ( Base `  S
) )
2928adantrl 715 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  b  e.  ( Base `  S )
)
30 eqid 2467 . . . . . 6  |-  ( +g  `  S )  =  ( +g  `  S )
3110, 30, 4ghmlin 16144 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  a  e.  ( Base `  S
)  /\  b  e.  ( Base `  S )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
3225, 27, 29, 31syl3anc 1228 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( F `  ( a ( +g  `  S ) b ) )  =  ( ( F `  a ) ( +g  `  T
) ( F `  b ) ) )
335, 30ressplusg 14614 . . . . . . . 8  |-  ( X  e.  (SubGrp `  S
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
3433ad2antlr 726 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( +g  `  S )  =  ( +g  `  U ) )
3534oveqd 6312 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  =  ( a ( +g  `  U
) b ) )
3635fveq2d 5876 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  S ) b ) )  =  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) ) )
3730subgcl 16083 . . . . . . . 8  |-  ( ( X  e.  (SubGrp `  S )  /\  a  e.  X  /\  b  e.  X )  ->  (
a ( +g  `  S
) b )  e.  X )
38373expb 1197 . . . . . . 7  |-  ( ( X  e.  (SubGrp `  S )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  e.  X
)
3938adantll 713 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( a
( +g  `  S ) b )  e.  X
)
40 fvres 5886 . . . . . 6  |-  ( ( a ( +g  `  S
) b )  e.  X  ->  ( ( F  |`  X ) `  ( a ( +g  `  S ) b ) )  =  ( F `
 ( a ( +g  `  S ) b ) ) )
4139, 40syl 16 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  S ) b ) )  =  ( F `
 ( a ( +g  `  S ) b ) ) )
4236, 41eqtr3d 2510 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) )  =  ( F `
 ( a ( +g  `  S ) b ) ) )
43 fvres 5886 . . . . . 6  |-  ( a  e.  X  ->  (
( F  |`  X ) `
 a )  =  ( F `  a
) )
44 fvres 5886 . . . . . 6  |-  ( b  e.  X  ->  (
( F  |`  X ) `
 b )  =  ( F `  b
) )
4543, 44oveqan12d 6314 . . . . 5  |-  ( ( a  e.  X  /\  b  e.  X )  ->  ( ( ( F  |`  X ) `  a
) ( +g  `  T
) ( ( F  |`  X ) `  b
) )  =  ( ( F `  a
) ( +g  `  T
) ( F `  b ) ) )
4645adantl 466 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( (
( F  |`  X ) `
 a ) ( +g  `  T ) ( ( F  |`  X ) `  b
) )  =  ( ( F `  a
) ( +g  `  T
) ( F `  b ) ) )
4732, 42, 463eqtr4d 2518 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  X  /\  b  e.  X )
)  ->  ( ( F  |`  X ) `  ( a ( +g  `  U ) b ) )  =  ( ( ( F  |`  X ) `
 a ) ( +g  `  T ) ( ( F  |`  X ) `  b
) ) )
4824, 47syldan 470 . 2  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  X  e.  (SubGrp `  S
) )  /\  (
a  e.  ( Base `  U )  /\  b  e.  ( Base `  U
) ) )  -> 
( ( F  |`  X ) `  (
a ( +g  `  U
) b ) )  =  ( ( ( F  |`  X ) `  a ) ( +g  `  T ) ( ( F  |`  X ) `  b ) ) )
491, 2, 3, 4, 7, 9, 19, 48isghmd 16148 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  (SubGrp `  S )
)  ->  ( F  |`  X )  e.  ( U  GrpHom  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3481    |` cres 5007   -->wf 5590   ` cfv 5594  (class class class)co 6295   Basecbs 14507   ↾s cress 14508   +g cplusg 14572   Grpcgrp 15925  SubGrpcsubg 16067    GrpHom cghm 16136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-subg 16070  df-ghm 16137
This theorem is referenced by:  ghmima  16159  resrhm  17329  reslmhm  17569
  Copyright terms: Public domain W3C validator