MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfunexgALT Structured version   Visualization version   Unicode version

Theorem resfunexgALT 6775
Description: Alternate proof of resfunexg 6146, shorter but requiring ax-pow 4579 and ax-un 6602. (Contributed by NM, 7-Apr-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
resfunexgALT  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )

Proof of Theorem resfunexgALT
StepHypRef Expression
1 dmresexg 5133 . . . 4  |-  ( B  e.  C  ->  dom  ( A  |`  B )  e.  _V )
21adantl 473 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  dom  ( A  |`  B )  e.  _V )
3 df-ima 4852 . . . 4  |-  ( A
" B )  =  ran  ( A  |`  B )
4 funimaexg 5670 . . . 4  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A " B )  e. 
_V )
53, 4syl5eqelr 2554 . . 3  |-  ( ( Fun  A  /\  B  e.  C )  ->  ran  ( A  |`  B )  e.  _V )
62, 5jca 541 . 2  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( dom  ( A  |`  B )  e.  _V  /\  ran  ( A  |`  B )  e.  _V ) )
7 xpexg 6612 . 2  |-  ( ( dom  ( A  |`  B )  e.  _V  /\ 
ran  ( A  |`  B )  e.  _V )  ->  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  e. 
_V )
8 relres 5138 . . . 4  |-  Rel  ( A  |`  B )
9 relssdmrn 5363 . . . 4  |-  ( Rel  ( A  |`  B )  ->  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) ) )
108, 9ax-mp 5 . . 3  |-  ( A  |`  B )  C_  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )
11 ssexg 4542 . . 3  |-  ( ( ( A  |`  B ) 
C_  ( dom  ( A  |`  B )  X. 
ran  ( A  |`  B ) )  /\  ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V )  ->  ( A  |`  B )  e.  _V )
1210, 11mpan 684 . 2  |-  ( ( dom  ( A  |`  B )  X.  ran  ( A  |`  B ) )  e.  _V  ->  ( A  |`  B )  e.  _V )
136, 7, 123syl 18 1  |-  ( ( Fun  A  /\  B  e.  C )  ->  ( A  |`  B )  e. 
_V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    e. wcel 1904   _Vcvv 3031    C_ wss 3390    X. cxp 4837   dom cdm 4839   ran crn 4840    |` cres 4841   "cima 4842   Rel wrel 4844   Fun wfun 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-fun 5591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator