Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resf1o Structured version   Unicode version

Theorem resf1o 27241
Description: Restriction of functions to a superset of their support creates a bijection. (Contributed by Thierry Arnoux, 12-Sep-2017.)
Hypotheses
Ref Expression
resf1o.1  |-  X  =  { f  e.  ( B  ^m  A )  |  ( `' f
" ( B  \  { Z } ) ) 
C_  C }
resf1o.2  |-  F  =  ( f  e.  X  |->  ( f  |`  C ) )
Assertion
Ref Expression
resf1o  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B
)  ->  F : X
-1-1-onto-> ( B  ^m  C ) )
Distinct variable groups:    A, f    B, f    C, f    f, V   
f, W    f, X    f, Z
Allowed substitution hint:    F( f)

Proof of Theorem resf1o
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resf1o.2 . 2  |-  F  =  ( f  e.  X  |->  ( f  |`  C ) )
2 resexg 5315 . . 3  |-  ( f  e.  X  ->  (
f  |`  C )  e. 
_V )
32adantl 466 . 2  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  f  e.  X )  ->  (
f  |`  C )  e. 
_V )
4 simpr 461 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  g  e.  ( B  ^m  C ) )  ->  g  e.  ( B  ^m  C ) )
5 difexg 4595 . . . . . . 7  |-  ( A  e.  V  ->  ( A  \  C )  e. 
_V )
653ad2ant1 1017 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  -> 
( A  \  C
)  e.  _V )
7 snex 4688 . . . . . 6  |-  { Z }  e.  _V
8 xpexg 6710 . . . . . 6  |-  ( ( ( A  \  C
)  e.  _V  /\  { Z }  e.  _V )  ->  ( ( A 
\  C )  X. 
{ Z } )  e.  _V )
96, 7, 8sylancl 662 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  -> 
( ( A  \  C )  X.  { Z } )  e.  _V )
109adantr 465 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  g  e.  ( B  ^m  C ) )  ->  ( ( A  \  C )  X. 
{ Z } )  e.  _V )
11 unexg 6584 . . . 4  |-  ( ( g  e.  ( B  ^m  C )  /\  ( ( A  \  C )  X.  { Z } )  e.  _V )  ->  ( g  u.  ( ( A  \  C )  X.  { Z } ) )  e. 
_V )
124, 10, 11syl2anc 661 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  g  e.  ( B  ^m  C ) )  ->  ( g  u.  ( ( A  \  C )  X.  { Z } ) )  e. 
_V )
1312adantlr 714 . 2  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  g  e.  ( B  ^m  C
) )  ->  (
g  u.  ( ( A  \  C )  X.  { Z }
) )  e.  _V )
14 resf1o.1 . . . . 5  |-  X  =  { f  e.  ( B  ^m  A )  |  ( `' f
" ( B  \  { Z } ) ) 
C_  C }
1514rabeq2i 3110 . . . 4  |-  ( f  e.  X  <->  ( f  e.  ( B  ^m  A
)  /\  ( `' f " ( B  \  { Z } ) ) 
C_  C ) )
1615anbi1i 695 . . 3  |-  ( ( f  e.  X  /\  g  =  ( f  |`  C ) )  <->  ( (
f  e.  ( B  ^m  A )  /\  ( `' f " ( B  \  { Z }
) )  C_  C
)  /\  g  =  ( f  |`  C ) ) )
17 simprr 756 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  g  =  ( f  |`  C )
)
18 simprll 761 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  f  e.  ( B  ^m  A ) )
19 elmapi 7440 . . . . . . . . . 10  |-  ( f  e.  ( B  ^m  A )  ->  f : A --> B )
2018, 19syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  f : A --> B )
21 simp3 998 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  ->  C  C_  A )
2221ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  C  C_  A
)
23 fssres 5750 . . . . . . . . 9  |-  ( ( f : A --> B  /\  C  C_  A )  -> 
( f  |`  C ) : C --> B )
2420, 22, 23syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f  |`  C ) : C --> B )
25 simp2 997 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  ->  B  e.  W )
26 simp1 996 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  ->  A  e.  V )
27 ssexg 4593 . . . . . . . . . . 11  |-  ( ( C  C_  A  /\  A  e.  V )  ->  C  e.  _V )
2821, 26, 27syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  ->  C  e.  _V )
29 elmapg 7433 . . . . . . . . . 10  |-  ( ( B  e.  W  /\  C  e.  _V )  ->  ( ( f  |`  C )  e.  ( B  ^m  C )  <-> 
( f  |`  C ) : C --> B ) )
3025, 28, 29syl2anc 661 . . . . . . . . 9  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  -> 
( ( f  |`  C )  e.  ( B  ^m  C )  <-> 
( f  |`  C ) : C --> B ) )
3130ad2antrr 725 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( ( f  |`  C )  e.  ( B  ^m  C )  <-> 
( f  |`  C ) : C --> B ) )
3224, 31mpbird 232 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f  |`  C )  e.  ( B  ^m  C ) )
3317, 32eqeltrd 2555 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  g  e.  ( B  ^m  C ) )
34 undif 3907 . . . . . . . . . . . 12  |-  ( C 
C_  A  <->  ( C  u.  ( A  \  C
) )  =  A )
3534biimpi 194 . . . . . . . . . . 11  |-  ( C 
C_  A  ->  ( C  u.  ( A  \  C ) )  =  A )
3635reseq2d 5272 . . . . . . . . . 10  |-  ( C 
C_  A  ->  (
f  |`  ( C  u.  ( A  \  C ) ) )  =  ( f  |`  A )
)
3722, 36syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f  |`  ( C  u.  ( A  \  C ) ) )  =  ( f  |`  A ) )
38 ffn 5730 . . . . . . . . . 10  |-  ( f : A --> B  -> 
f  Fn  A )
39 fnresdm 5689 . . . . . . . . . 10  |-  ( f  Fn  A  ->  (
f  |`  A )  =  f )
4020, 38, 393syl 20 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f  |`  A )  =  f )
4137, 40eqtr2d 2509 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  f  =  ( f  |`  ( C  u.  ( A  \  C
) ) ) )
42 resundi 5286 . . . . . . . 8  |-  ( f  |`  ( C  u.  ( A  \  C ) ) )  =  ( ( f  |`  C )  u.  ( f  |`  ( A  \  C ) ) )
4341, 42syl6eq 2524 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  f  =  ( ( f  |`  C )  u.  ( f  |`  ( A  \  C ) ) ) )
44 eqcom 2476 . . . . . . . . . 10  |-  ( g  =  ( f  |`  C )  <->  ( f  |`  C )  =  g )
4544imbi2i 312 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  g  =  ( f  |`  C )
)  <->  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B
)  /\  ( (
f  e.  ( B  ^m  A )  /\  ( `' f " ( B  \  { Z }
) )  C_  C
)  /\  g  =  ( f  |`  C ) ) )  ->  (
f  |`  C )  =  g ) )
4617, 45mpbi 208 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f  |`  C )  =  g )
47 simprlr 762 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( `' f
" ( B  \  { Z } ) ) 
C_  C )
4826ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  A  e.  V
)
49 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  Z  e.  B
)
50 eqid 2467 . . . . . . . . . . . 12  |-  ( B 
\  { Z }
)  =  ( B 
\  { Z }
)
5150ffs2 27239 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  Z  e.  B  /\  f : A --> B )  ->  ( f supp  Z
)  =  ( `' f " ( B 
\  { Z }
) ) )
5248, 49, 20, 51syl3anc 1228 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f supp  Z
)  =  ( `' f " ( B 
\  { Z }
) ) )
53 dfss1 3703 . . . . . . . . . . . 12  |-  ( C 
C_  A  <->  ( A  i^i  C )  =  C )
5453biimpi 194 . . . . . . . . . . 11  |-  ( C 
C_  A  ->  ( A  i^i  C )  =  C )
5522, 54syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( A  i^i  C )  =  C )
5647, 52, 553sstr4d 3547 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f supp  Z
)  C_  ( A  i^i  C ) )
57 simpl 457 . . . . . . . . . . . . 13  |-  ( ( f  e.  ( B  ^m  A )  /\  Z  e.  B )  ->  f  e.  ( B  ^m  A ) )
5857, 19, 383syl 20 . . . . . . . . . . . 12  |-  ( ( f  e.  ( B  ^m  A )  /\  Z  e.  B )  ->  f  Fn  A )
59 inundif 3905 . . . . . . . . . . . . 13  |-  ( ( A  i^i  C )  u.  ( A  \  C ) )  =  A
6059fneq2i 5675 . . . . . . . . . . . 12  |-  ( f  Fn  ( ( A  i^i  C )  u.  ( A  \  C
) )  <->  f  Fn  A )
6158, 60sylibr 212 . . . . . . . . . . 11  |-  ( ( f  e.  ( B  ^m  A )  /\  Z  e.  B )  ->  f  Fn  ( ( A  i^i  C )  u.  ( A  \  C ) ) )
62 vex 3116 . . . . . . . . . . . 12  |-  f  e. 
_V
6362a1i 11 . . . . . . . . . . 11  |-  ( ( f  e.  ( B  ^m  A )  /\  Z  e.  B )  ->  f  e.  _V )
64 simpr 461 . . . . . . . . . . 11  |-  ( ( f  e.  ( B  ^m  A )  /\  Z  e.  B )  ->  Z  e.  B )
65 inindif 27104 . . . . . . . . . . . 12  |-  ( ( A  i^i  C )  i^i  ( A  \  C ) )  =  (/)
6665a1i 11 . . . . . . . . . . 11  |-  ( ( f  e.  ( B  ^m  A )  /\  Z  e.  B )  ->  ( ( A  i^i  C )  i^i  ( A 
\  C ) )  =  (/) )
67 fnsuppres 6927 . . . . . . . . . . 11  |-  ( ( f  Fn  ( ( A  i^i  C )  u.  ( A  \  C ) )  /\  ( f  e.  _V  /\  Z  e.  B )  /\  ( ( A  i^i  C )  i^i  ( A  \  C
) )  =  (/) )  ->  ( ( f supp 
Z )  C_  ( A  i^i  C )  <->  ( f  |`  ( A  \  C
) )  =  ( ( A  \  C
)  X.  { Z } ) ) )
6861, 63, 64, 66, 67syl121anc 1233 . . . . . . . . . 10  |-  ( ( f  e.  ( B  ^m  A )  /\  Z  e.  B )  ->  ( ( f supp  Z
)  C_  ( A  i^i  C )  <->  ( f  |`  ( A  \  C
) )  =  ( ( A  \  C
)  X.  { Z } ) ) )
6918, 49, 68syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( ( f supp 
Z )  C_  ( A  i^i  C )  <->  ( f  |`  ( A  \  C
) )  =  ( ( A  \  C
)  X.  { Z } ) ) )
7056, 69mpbid 210 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( f  |`  ( A  \  C ) )  =  ( ( A  \  C )  X.  { Z }
) )
7146, 70uneq12d 3659 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( ( f  |`  C )  u.  (
f  |`  ( A  \  C ) ) )  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) )
7243, 71eqtrd 2508 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  f  =  ( g  u.  ( ( A  \  C )  X.  { Z }
) ) )
7333, 72jca 532 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) ) )  ->  ( g  e.  ( B  ^m  C
)  /\  f  =  ( g  u.  (
( A  \  C
)  X.  { Z } ) ) ) )
7473ex 434 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B
)  ->  ( (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) )  -> 
( g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z }
) ) ) ) )
7525ad2antrr 725 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  B  e.  W )
7626ad2antrr 725 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  A  e.  V )
774ad2ant2r 746 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  g  e.  ( B  ^m  C ) )
78 elmapi 7440 . . . . . . . . . 10  |-  ( g  e.  ( B  ^m  C )  ->  g : C --> B )
7977, 78syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  g : C
--> B )
80 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  Z  e.  B )
81 fconstg 5771 . . . . . . . . . . 11  |-  ( Z  e.  B  ->  (
( A  \  C
)  X.  { Z } ) : ( A  \  C ) --> { Z } )
82 snssi 4171 . . . . . . . . . . 11  |-  ( Z  e.  B  ->  { Z }  C_  B )
83 fss 5738 . . . . . . . . . . 11  |-  ( ( ( ( A  \  C )  X.  { Z } ) : ( A  \  C ) --> { Z }  /\  { Z }  C_  B
)  ->  ( ( A  \  C )  X. 
{ Z } ) : ( A  \  C ) --> B )
8481, 82, 83syl2anc 661 . . . . . . . . . 10  |-  ( Z  e.  B  ->  (
( A  \  C
)  X.  { Z } ) : ( A  \  C ) --> B )
8580, 84syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( ( A  \  C )  X. 
{ Z } ) : ( A  \  C ) --> B )
86 disjdif 3899 . . . . . . . . . 10  |-  ( C  i^i  ( A  \  C ) )  =  (/)
8786a1i 11 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( C  i^i  ( A  \  C
) )  =  (/) )
88 fun2 5748 . . . . . . . . 9  |-  ( ( ( g : C --> B  /\  ( ( A 
\  C )  X. 
{ Z } ) : ( A  \  C ) --> B )  /\  ( C  i^i  ( A  \  C ) )  =  (/) )  -> 
( g  u.  (
( A  \  C
)  X.  { Z } ) ) : ( C  u.  ( A  \  C ) ) --> B )
8979, 85, 87, 88syl21anc 1227 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) : ( C  u.  ( A  \  C ) ) --> B )
90 simprr 756 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  f  =  ( g  u.  (
( A  \  C
)  X.  { Z } ) ) )
9190eqcomd 2475 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( g  u.  ( ( A  \  C )  X.  { Z } ) )  =  f )
9221ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  C  C_  A
)
9392, 35syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( C  u.  ( A  \  C
) )  =  A )
9491, 93feq12d 5719 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( (
g  u.  ( ( A  \  C )  X.  { Z }
) ) : ( C  u.  ( A 
\  C ) ) --> B  <->  f : A --> B ) )
9589, 94mpbid 210 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  f : A
--> B )
96 elmapg 7433 . . . . . . . 8  |-  ( ( B  e.  W  /\  A  e.  V )  ->  ( f  e.  ( B  ^m  A )  <-> 
f : A --> B ) )
9796biimpar 485 . . . . . . 7  |-  ( ( ( B  e.  W  /\  A  e.  V
)  /\  f : A
--> B )  ->  f  e.  ( B  ^m  A
) )
9875, 76, 95, 97syl21anc 1227 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  f  e.  ( B  ^m  A ) )
9976, 80, 95, 51syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( f supp  Z )  =  ( `' f " ( B 
\  { Z }
) ) )
10090adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) )
101100fveq1d 5867 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  (
f `  x )  =  ( ( g  u.  ( ( A 
\  C )  X. 
{ Z } ) ) `  x ) )
10279adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  g : C --> B )
103 ffn 5730 . . . . . . . . . . 11  |-  ( g : C --> B  -> 
g  Fn  C )
104102, 103syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  g  Fn  C )
10581ad3antlr 730 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  (
( A  \  C
)  X.  { Z } ) : ( A  \  C ) --> { Z } )
106 ffn 5730 . . . . . . . . . . 11  |-  ( ( ( A  \  C
)  X.  { Z } ) : ( A  \  C ) --> { Z }  ->  ( ( A  \  C
)  X.  { Z } )  Fn  ( A  \  C ) )
107105, 106syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  (
( A  \  C
)  X.  { Z } )  Fn  ( A  \  C ) )
10886a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  ( C  i^i  ( A  \  C ) )  =  (/) )
109 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  x  e.  ( A  \  C
) )
110 fvun2 5938 . . . . . . . . . 10  |-  ( ( g  Fn  C  /\  ( ( A  \  C )  X.  { Z } )  Fn  ( A  \  C )  /\  ( ( C  i^i  ( A  \  C ) )  =  (/)  /\  x  e.  ( A  \  C
) ) )  -> 
( ( g  u.  ( ( A  \  C )  X.  { Z } ) ) `  x )  =  ( ( ( A  \  C )  X.  { Z } ) `  x
) )
111104, 107, 108, 109, 110syl112anc 1232 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  (
( g  u.  (
( A  \  C
)  X.  { Z } ) ) `  x )  =  ( ( ( A  \  C )  X.  { Z } ) `  x
) )
112 fvconst 6078 . . . . . . . . . 10  |-  ( ( ( ( A  \  C )  X.  { Z } ) : ( A  \  C ) --> { Z }  /\  x  e.  ( A  \  C ) )  -> 
( ( ( A 
\  C )  X. 
{ Z } ) `
 x )  =  Z )
113105, 109, 112syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  (
( ( A  \  C )  X.  { Z } ) `  x
)  =  Z )
114101, 111, 1133eqtrd 2512 . . . . . . . 8  |-  ( ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  /\  x  e.  ( A  \  C
) )  ->  (
f `  x )  =  Z )
11595, 114suppss 6930 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( f supp  Z )  C_  C )
11699, 115eqsstr3d 3539 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( `' f " ( B  \  { Z } ) ) 
C_  C )
11790reseq1d 5271 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( f  |`  C )  =  ( ( g  u.  (
( A  \  C
)  X.  { Z } ) )  |`  C ) )
118 res0 5277 . . . . . . . . . . 11  |-  ( ( ( A  \  C
)  X.  { Z } )  |`  (/) )  =  (/)
119 res0 5277 . . . . . . . . . . 11  |-  ( g  |`  (/) )  =  (/)
120118, 119eqtr4i 2499 . . . . . . . . . 10  |-  ( ( ( A  \  C
)  X.  { Z } )  |`  (/) )  =  ( g  |`  (/) )
12186reseq2i 5269 . . . . . . . . . 10  |-  ( ( ( A  \  C
)  X.  { Z } )  |`  ( C  i^i  ( A  \  C ) ) )  =  ( ( ( A  \  C )  X.  { Z }
)  |`  (/) )
12286reseq2i 5269 . . . . . . . . . 10  |-  ( g  |`  ( C  i^i  ( A  \  C ) ) )  =  ( g  |`  (/) )
123120, 121, 1223eqtr4ri 2507 . . . . . . . . 9  |-  ( g  |`  ( C  i^i  ( A  \  C ) ) )  =  ( ( ( A  \  C
)  X.  { Z } )  |`  ( C  i^i  ( A  \  C ) ) )
124123a1i 11 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( g  |`  ( C  i^i  ( A  \  C ) ) )  =  ( ( ( A  \  C
)  X.  { Z } )  |`  ( C  i^i  ( A  \  C ) ) ) )
125 fresaunres1 5757 . . . . . . . 8  |-  ( ( g : C --> B  /\  ( ( A  \  C )  X.  { Z } ) : ( A  \  C ) --> B  /\  ( g  |`  ( C  i^i  ( A  \  C ) ) )  =  ( ( ( A  \  C
)  X.  { Z } )  |`  ( C  i^i  ( A  \  C ) ) ) )  ->  ( (
g  u.  ( ( A  \  C )  X.  { Z }
) )  |`  C )  =  g )
12679, 85, 124, 125syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( (
g  u.  ( ( A  \  C )  X.  { Z }
) )  |`  C )  =  g )
127117, 126eqtr2d 2509 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  g  =  ( f  |`  C ) )
12898, 116, 127jca31 534 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B )  /\  (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) ) )  ->  ( (
f  e.  ( B  ^m  A )  /\  ( `' f " ( B  \  { Z }
) )  C_  C
)  /\  g  =  ( f  |`  C ) ) )
129128ex 434 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B
)  ->  ( (
g  e.  ( B  ^m  C )  /\  f  =  ( g  u.  ( ( A  \  C )  X.  { Z } ) ) )  ->  ( ( f  e.  ( B  ^m  A )  /\  ( `' f " ( B  \  { Z }
) )  C_  C
)  /\  g  =  ( f  |`  C ) ) ) )
13074, 129impbid 191 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B
)  ->  ( (
( f  e.  ( B  ^m  A )  /\  ( `' f
" ( B  \  { Z } ) ) 
C_  C )  /\  g  =  ( f  |`  C ) )  <->  ( g  e.  ( B  ^m  C
)  /\  f  =  ( g  u.  (
( A  \  C
)  X.  { Z } ) ) ) ) )
13116, 130syl5bb 257 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B
)  ->  ( (
f  e.  X  /\  g  =  ( f  |`  C ) )  <->  ( g  e.  ( B  ^m  C
)  /\  f  =  ( g  u.  (
( A  \  C
)  X.  { Z } ) ) ) ) )
1321, 3, 13, 131f1od 6508 1  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  C_  A )  /\  Z  e.  B
)  ->  F : X
-1-1-onto-> ( B  ^m  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {crab 2818   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027    |-> cmpt 4505    X. cxp 4997   `'ccnv 4998    |` cres 5001   "cima 5002    Fn wfn 5582   -->wf 5583   -1-1-onto->wf1o 5586   ` cfv 5587  (class class class)co 6283   supp csupp 6901    ^m cmap 7420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-1st 6784  df-2nd 6785  df-supp 6902  df-map 7422
This theorem is referenced by:  eulerpartgbij  27967
  Copyright terms: Public domain W3C validator