Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rescon Structured version   Unicode version

Theorem rescon 28359
Description: A subset of  RR is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
rescon.1  |-  J  =  ( ( topGen `  ran  (,) )t  A )
Assertion
Ref Expression
rescon  |-  ( A 
C_  RR  ->  ( J  e. SCon 
<->  J  e.  Con )
)

Proof of Theorem rescon
Dummy variables  t 
s  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconpcon 28340 . . 3  |-  ( J  e. SCon  ->  J  e. PCon )
2 pconcon 28344 . . 3  |-  ( J  e. PCon  ->  J  e.  Con )
31, 2syl 16 . 2  |-  ( J  e. SCon  ->  J  e.  Con )
4 eqid 2467 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5 eqid 2467 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
64, 5rerest 21072 . . . . . 6  |-  ( A 
C_  RR  ->  ( (
TopOpen ` fld )t  A )  =  ( ( topGen `  ran  (,) )t  A
) )
7 rescon.1 . . . . . 6  |-  J  =  ( ( topGen `  ran  (,) )t  A )
86, 7syl6eqr 2526 . . . . 5  |-  ( A 
C_  RR  ->  ( (
TopOpen ` fld )t  A )  =  J )
98adantr 465 . . . 4  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  (
( TopOpen ` fld )t  A )  =  J )
10 simpl 457 . . . . . 6  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A  C_  RR )
11 ax-resscn 9549 . . . . . 6  |-  RR  C_  CC
1210, 11syl6ss 3516 . . . . 5  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A  C_  CC )
13 df-3an 975 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A  /\  t  e.  ( 0 [,] 1 ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  /\  t  e.  ( 0 [,] 1
) ) )
14 oveq2 6292 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
t  x.  z )  =  ( t  x.  x ) )
15 oveq2 6292 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
( 1  -  t
)  x.  w )  =  ( ( 1  -  t )  x.  y ) )
1614, 15oveqan12d 6303 . . . . . . . . . . 11  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( t  x.  z )  +  ( ( 1  -  t
)  x.  w ) )  =  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) ) )
1716eleq1d 2536 . . . . . . . . . 10  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A ) )
1817ralbidv 2903 . . . . . . . . 9  |-  ( ( z  =  x  /\  w  =  y )  ->  ( A. t  e.  ( 0 [,] 1
) ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A ) )
19 oveq2 6292 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
t  x.  z )  =  ( t  x.  y ) )
20 oveq2 6292 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( 1  -  t
)  x.  w )  =  ( ( 1  -  t )  x.  x ) )
2119, 20oveqan12d 6303 . . . . . . . . . . 11  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ( t  x.  z )  +  ( ( 1  -  t
)  x.  w ) )  =  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x ) ) )
2221eleq1d 2536 . . . . . . . . . 10  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
2322ralbidv 2903 . . . . . . . . 9  |-  ( ( z  =  y  /\  w  =  x )  ->  ( A. t  e.  ( 0 [,] 1
) ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
24 unitssre 11667 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] 1 )  C_  RR
2524, 11sstri 3513 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  CC
26 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  s  e.  ( 0 [,] 1 ) )
2725, 26sseldi 3502 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  s  e.  CC )
2812adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A  C_  CC )
29 simpr2 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  y  e.  A )
3028, 29sseldd 3505 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  y  e.  CC )
3130adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  y  e.  CC )
3227, 31mulcld 9616 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s  x.  y )  e.  CC )
33 ax-1cn 9550 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
34 subcl 9819 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  s
)  e.  CC )
3533, 27, 34sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  s )  e.  CC )
36 simpr1 1002 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  x  e.  A )
3728, 36sseldd 3505 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  x  e.  CC )
3837adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
3935, 38mulcld 9616 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  s )  x.  x )  e.  CC )
4032, 39addcomd 9781 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( s  x.  y ) ) )
41 nncan 9848 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  (
1  -  s ) )  =  s )
4233, 27, 41sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 1  -  s
) )  =  s )
4342oveq1d 6299 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  ( 1  -  s ) )  x.  y )  =  ( s  x.  y ) )
4443oveq2d 6300 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( s  x.  y ) ) )
4540, 44eqtr4d 2511 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( ( 1  -  ( 1  -  s ) )  x.  y ) ) )
46 iirev 21192 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  ->  (
1  -  s )  e.  ( 0 [,] 1 ) )
4746adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  s )  e.  ( 0 [,] 1 ) )
487eleq1i 2544 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  Con  <->  ( ( topGen `
 ran  (,) )t  A
)  e.  Con )
49 reconn 21096 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  A
)  e.  Con  <->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
) )
5048, 49syl5bb 257 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A 
C_  RR  ->  ( J  e.  Con  <->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
) )
5150biimpa 484 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
)
5251r19.21bi 2833 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  x  e.  A
)  ->  A. y  e.  A  ( x [,] y )  C_  A
)
5352r19.21bi 2833 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  x  e.  A
)  /\  y  e.  A )  ->  (
x [,] y ) 
C_  A )
5453anasss 647 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x [,] y ) 
C_  A )
55543adantr3 1157 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  ( x [,] y )  C_  A
)
5655adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( x [,] y )  C_  A
)
57 simpr 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  ( 0 [,] 1 ) )
5824, 57sseldi 3502 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  RR )
59 simplll 757 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  A  C_  RR )
6036adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  A
)
6159, 60sseldd 3505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  RR )
6258, 61remulcld 9624 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  x )  e.  RR )
63 1re 9595 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  RR
64 resubcl 9883 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  t  e.  RR )  ->  ( 1  -  t
)  e.  RR )
6563, 58, 64sylancr 663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  -  t )  e.  RR )
6629adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  A
)
6759, 66sseldd 3505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  RR )
6865, 67remulcld 9624 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  y )  e.  RR )
6962, 68readdcld 9623 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  RR )
7058recnd 9622 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  CC )
71 pncan3 9828 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  e.  CC  /\  1  e.  CC )  ->  ( t  +  ( 1  -  t ) )  =  1 )
7270, 33, 71sylancl 662 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  +  ( 1  -  t
) )  =  1 )
7372oveq1d 6299 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  x )  =  ( 1  x.  x ) )
7465recnd 9622 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  -  t )  e.  CC )
7537adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
7670, 74, 75adddird 9621 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  x )  =  ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  x ) ) )
7775mulid2d 9614 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  x )  =  x )
7873, 76, 773eqtr3d 2516 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  x
) )  =  x )
7965, 61remulcld 9624 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  x )  e.  RR )
80 0re 9596 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  e.  RR
8180, 63elicc2i 11590 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
8257, 81sylib 196 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
8382simp3d 1010 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  <_  1
)
84 subge0 10065 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  t  e.  RR )  ->  ( 0  <_  (
1  -  t )  <-> 
t  <_  1 ) )
8563, 58, 84sylancr 663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 0  <_ 
( 1  -  t
)  <->  t  <_  1
) )
8683, 85mpbird 232 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  0  <_  (
1  -  t ) )
87 simplr3 1040 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  <_  y
)
8861, 67, 65, 86, 87lemul2ad 10486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  x )  <_  (
( 1  -  t
)  x.  y ) )
8979, 68, 62, 88leadd2dd 10167 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  x
) )  <_  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )
9078, 89eqbrtrrd 4469 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  <_  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )
9158, 67remulcld 9624 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  y )  e.  RR )
9282simp2d 1009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  0  <_  t
)
9361, 67, 58, 92, 87lemul2ad 10486 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  x )  <_  (
t  x.  y ) )
9462, 91, 68, 93leadd1dd 10166 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  <_  (
( t  x.  y
)  +  ( ( 1  -  t )  x.  y ) ) )
9572oveq1d 6299 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  y )  =  ( 1  x.  y ) )
9630adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  CC )
9770, 74, 96adddird 9621 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  y )  =  ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  y ) ) )
9896mulid2d 9614 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  y )  =  y )
9995, 97, 983eqtr3d 2516 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  y
) )  =  y )
10094, 99breqtrd 4471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  <_  y
)
101 elicc2 11589 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  ( x [,] y )  <-> 
( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  RR  /\  x  <_  ( (
t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  /\  ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  <_  y )
) )
10261, 67, 101syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  ( x [,] y
)  <->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  RR  /\  x  <_ 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  /\  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  <_ 
y ) ) )
10369, 90, 100, 102mpbir3and 1179 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  ( x [,] y ) )
10456, 103sseldd 3505 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
105104ralrimiva 2878 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
106105adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A )
107 oveq1 6291 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( 1  -  s )  ->  (
t  x.  x )  =  ( ( 1  -  s )  x.  x ) )
108 oveq2 6292 . . . . . . . . . . . . . . . . 17  |-  ( t  =  ( 1  -  s )  ->  (
1  -  t )  =  ( 1  -  ( 1  -  s
) ) )
109108oveq1d 6299 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( 1  -  s )  ->  (
( 1  -  t
)  x.  y )  =  ( ( 1  -  ( 1  -  s ) )  x.  y ) )
110107, 109oveq12d 6302 . . . . . . . . . . . . . . 15  |-  ( t  =  ( 1  -  s )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  =  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) ) )
111110eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( t  =  ( 1  -  s )  ->  (
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A  <->  ( (
( 1  -  s
)  x.  x )  +  ( ( 1  -  ( 1  -  s ) )  x.  y ) )  e.  A ) )
112111rspcv 3210 . . . . . . . . . . . . 13  |-  ( ( 1  -  s )  e.  ( 0 [,] 1 )  ->  ( A. t  e.  (
0 [,] 1 ) ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A  -> 
( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  (
1  -  s ) )  x.  y ) )  e.  A ) )
11347, 106, 112sylc 60 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) )  e.  A
)
11445, 113eqeltrd 2555 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  e.  A
)
115114ralrimiva 2878 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. s  e.  ( 0 [,] 1
) ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  e.  A
)
116 oveq1 6291 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
s  x.  y )  =  ( t  x.  y ) )
117 oveq2 6292 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  (
1  -  s )  =  ( 1  -  t ) )
118117oveq1d 6299 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( 1  -  s
)  x.  x )  =  ( ( 1  -  t )  x.  x ) )
119116, 118oveq12d 6302 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( s  x.  y
)  +  ( ( 1  -  s )  x.  x ) )  =  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) ) )
120119eleq1d 2536 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
( ( s  x.  y )  +  ( ( 1  -  s
)  x.  x ) )  e.  A  <->  ( (
t  x.  y )  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
121120cbvralv 3088 . . . . . . . . . 10  |-  ( A. s  e.  ( 0 [,] 1 ) ( ( s  x.  y
)  +  ( ( 1  -  s )  x.  x ) )  e.  A  <->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) )  e.  A
)
122115, 121sylib 196 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) )  e.  A
)
12318, 23, 10, 122, 105wloglei 10085 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
124123r19.21bi 2833 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
125124anasss 647 . . . . . 6  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( ( x  e.  A  /\  y  e.  A )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A )
12613, 125sylan2b 475 . . . . 5  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  t  e.  (
0 [,] 1 ) ) )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A )
127 eqid 2467 . . . . 5  |-  ( (
TopOpen ` fld )t  A )  =  ( ( TopOpen ` fld )t  A )
12812, 126, 4, 127cvxscon 28356 . . . 4  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  (
( TopOpen ` fld )t  A )  e. SCon )
1299, 128eqeltrrd 2556 . . 3  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  J  e. SCon )
130129ex 434 . 2  |-  ( A 
C_  RR  ->  ( J  e.  Con  ->  J  e. SCon ) )
1313, 130impbid2 204 1  |-  ( A 
C_  RR  ->  ( J  e. SCon 
<->  J  e.  Con )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814    C_ wss 3476   class class class wbr 4447   ran crn 5000   ` cfv 5588  (class class class)co 6284   CCcc 9490   RRcr 9491   0cc0 9492   1c1 9493    + caddc 9495    x. cmul 9497    <_ cle 9629    - cmin 9805   (,)cioo 11529   [,]cicc 11532   ↾t crest 14676   TopOpenctopn 14677   topGenctg 14693  ℂfldccnfld 18219   Conccon 19706  PConcpcon 28332  SConcscon 28333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570  ax-addf 9571  ax-mulf 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-map 7422  df-ixp 7470  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-fi 7871  df-sup 7901  df-oi 7935  df-card 8320  df-cda 8548  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-q 11183  df-rp 11221  df-xneg 11318  df-xadd 11319  df-xmul 11320  df-ioo 11533  df-ico 11535  df-icc 11536  df-fz 11673  df-fzo 11793  df-seq 12076  df-exp 12135  df-hash 12374  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-sets 14496  df-ress 14497  df-plusg 14568  df-mulr 14569  df-starv 14570  df-sca 14571  df-vsca 14572  df-ip 14573  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-hom 14579  df-cco 14580  df-rest 14678  df-topn 14679  df-0g 14697  df-gsum 14698  df-topgen 14699  df-pt 14700  df-prds 14703  df-xrs 14757  df-qtop 14762  df-imas 14763  df-xps 14765  df-mre 14841  df-mrc 14842  df-acs 14844  df-mnd 15732  df-submnd 15787  df-mulg 15870  df-cntz 16160  df-cmn 16606  df-psmet 18210  df-xmet 18211  df-met 18212  df-bl 18213  df-mopn 18214  df-cnfld 18220  df-top 19194  df-bases 19196  df-topon 19197  df-topsp 19198  df-cld 19314  df-cn 19522  df-cnp 19523  df-con 19707  df-tx 19826  df-hmeo 20019  df-xms 20586  df-ms 20587  df-tms 20588  df-ii 21144  df-htpy 21233  df-phtpy 21234  df-phtpc 21255  df-pcon 28334  df-scon 28335
This theorem is referenced by:  iooscon  28360  iccscon  28361  iccllyscon  28363
  Copyright terms: Public domain W3C validator