Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rescon Structured version   Unicode version

Theorem rescon 29757
Description: A subset of  RR is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
rescon.1  |-  J  =  ( ( topGen `  ran  (,) )t  A )
Assertion
Ref Expression
rescon  |-  ( A 
C_  RR  ->  ( J  e. SCon 
<->  J  e.  Con )
)

Proof of Theorem rescon
Dummy variables  t 
s  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconpcon 29738 . . 3  |-  ( J  e. SCon  ->  J  e. PCon )
2 pconcon 29742 . . 3  |-  ( J  e. PCon  ->  J  e.  Con )
31, 2syl 17 . 2  |-  ( J  e. SCon  ->  J  e.  Con )
4 eqid 2429 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5 eqid 2429 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
64, 5rerest 21733 . . . . . 6  |-  ( A 
C_  RR  ->  ( (
TopOpen ` fld )t  A )  =  ( ( topGen `  ran  (,) )t  A
) )
7 rescon.1 . . . . . 6  |-  J  =  ( ( topGen `  ran  (,) )t  A )
86, 7syl6eqr 2488 . . . . 5  |-  ( A 
C_  RR  ->  ( (
TopOpen ` fld )t  A )  =  J )
98adantr 466 . . . 4  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  (
( TopOpen ` fld )t  A )  =  J )
10 simpl 458 . . . . . 6  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A  C_  RR )
11 ax-resscn 9595 . . . . . 6  |-  RR  C_  CC
1210, 11syl6ss 3482 . . . . 5  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A  C_  CC )
13 df-3an 984 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A  /\  t  e.  ( 0 [,] 1 ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  /\  t  e.  ( 0 [,] 1
) ) )
14 oveq2 6313 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
t  x.  z )  =  ( t  x.  x ) )
15 oveq2 6313 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
( 1  -  t
)  x.  w )  =  ( ( 1  -  t )  x.  y ) )
1614, 15oveqan12d 6324 . . . . . . . . . . 11  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( t  x.  z )  +  ( ( 1  -  t
)  x.  w ) )  =  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) ) )
1716eleq1d 2498 . . . . . . . . . 10  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A ) )
1817ralbidv 2871 . . . . . . . . 9  |-  ( ( z  =  x  /\  w  =  y )  ->  ( A. t  e.  ( 0 [,] 1
) ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A ) )
19 oveq2 6313 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
t  x.  z )  =  ( t  x.  y ) )
20 oveq2 6313 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( 1  -  t
)  x.  w )  =  ( ( 1  -  t )  x.  x ) )
2119, 20oveqan12d 6324 . . . . . . . . . . 11  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ( t  x.  z )  +  ( ( 1  -  t
)  x.  w ) )  =  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x ) ) )
2221eleq1d 2498 . . . . . . . . . 10  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
2322ralbidv 2871 . . . . . . . . 9  |-  ( ( z  =  y  /\  w  =  x )  ->  ( A. t  e.  ( 0 [,] 1
) ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
24 unitssre 11777 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] 1 )  C_  RR
2524, 11sstri 3479 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  CC
26 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  s  e.  ( 0 [,] 1 ) )
2725, 26sseldi 3468 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  s  e.  CC )
2812adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A  C_  CC )
29 simpr2 1012 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  y  e.  A )
3028, 29sseldd 3471 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  y  e.  CC )
3130adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  y  e.  CC )
3227, 31mulcld 9662 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s  x.  y )  e.  CC )
33 ax-1cn 9596 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
34 subcl 9873 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  s
)  e.  CC )
3533, 27, 34sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  s )  e.  CC )
36 simpr1 1011 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  x  e.  A )
3728, 36sseldd 3471 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  x  e.  CC )
3837adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
3935, 38mulcld 9662 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  s )  x.  x )  e.  CC )
4032, 39addcomd 9834 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( s  x.  y ) ) )
41 nncan 9902 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  (
1  -  s ) )  =  s )
4233, 27, 41sylancr 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 1  -  s
) )  =  s )
4342oveq1d 6320 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  ( 1  -  s ) )  x.  y )  =  ( s  x.  y ) )
4443oveq2d 6321 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( s  x.  y ) ) )
4540, 44eqtr4d 2473 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( ( 1  -  ( 1  -  s ) )  x.  y ) ) )
46 iirev 21853 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  ->  (
1  -  s )  e.  ( 0 [,] 1 ) )
4746adantl 467 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  s )  e.  ( 0 [,] 1 ) )
487eleq1i 2506 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  Con  <->  ( ( topGen `
 ran  (,) )t  A
)  e.  Con )
49 reconn 21757 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  A
)  e.  Con  <->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
) )
5048, 49syl5bb 260 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A 
C_  RR  ->  ( J  e.  Con  <->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
) )
5150biimpa 486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
)
5251r19.21bi 2801 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  x  e.  A
)  ->  A. y  e.  A  ( x [,] y )  C_  A
)
5352r19.21bi 2801 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  x  e.  A
)  /\  y  e.  A )  ->  (
x [,] y ) 
C_  A )
5453anasss 651 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x [,] y ) 
C_  A )
55543adantr3 1166 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  ( x [,] y )  C_  A
)
5655adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( x [,] y )  C_  A
)
57 simpr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  ( 0 [,] 1 ) )
5824, 57sseldi 3468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  RR )
59 simplll 766 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  A  C_  RR )
6036adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  A
)
6159, 60sseldd 3471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  RR )
6258, 61remulcld 9670 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  x )  e.  RR )
63 1re 9641 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  RR
64 resubcl 9937 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  t  e.  RR )  ->  ( 1  -  t
)  e.  RR )
6563, 58, 64sylancr 667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  -  t )  e.  RR )
6629adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  A
)
6759, 66sseldd 3471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  RR )
6865, 67remulcld 9670 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  y )  e.  RR )
6962, 68readdcld 9669 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  RR )
7058recnd 9668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  CC )
71 pncan3 9882 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  e.  CC  /\  1  e.  CC )  ->  ( t  +  ( 1  -  t ) )  =  1 )
7270, 33, 71sylancl 666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  +  ( 1  -  t
) )  =  1 )
7372oveq1d 6320 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  x )  =  ( 1  x.  x ) )
7465recnd 9668 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  -  t )  e.  CC )
7537adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
7670, 74, 75adddird 9667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  x )  =  ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  x ) ) )
7775mulid2d 9660 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  x )  =  x )
7873, 76, 773eqtr3d 2478 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  x
) )  =  x )
7965, 61remulcld 9670 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  x )  e.  RR )
80 0re 9642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  0  e.  RR
8180, 63elicc2i 11700 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
8257, 81sylib 199 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
8382simp3d 1019 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  <_  1
)
84 subge0 10126 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  t  e.  RR )  ->  ( 0  <_  (
1  -  t )  <-> 
t  <_  1 ) )
8563, 58, 84sylancr 667 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 0  <_ 
( 1  -  t
)  <->  t  <_  1
) )
8683, 85mpbird 235 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  0  <_  (
1  -  t ) )
87 simplr3 1049 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  <_  y
)
8861, 67, 65, 86, 87lemul2ad 10547 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  x )  <_  (
( 1  -  t
)  x.  y ) )
8979, 68, 62, 88leadd2dd 10227 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  x
) )  <_  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )
9078, 89eqbrtrrd 4448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  <_  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )
9158, 67remulcld 9670 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  y )  e.  RR )
9282simp2d 1018 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  0  <_  t
)
9361, 67, 58, 92, 87lemul2ad 10547 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  x )  <_  (
t  x.  y ) )
9462, 91, 68, 93leadd1dd 10226 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  <_  (
( t  x.  y
)  +  ( ( 1  -  t )  x.  y ) ) )
9572oveq1d 6320 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  y )  =  ( 1  x.  y ) )
9630adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  CC )
9770, 74, 96adddird 9667 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  y )  =  ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  y ) ) )
9896mulid2d 9660 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  y )  =  y )
9995, 97, 983eqtr3d 2478 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  y
) )  =  y )
10094, 99breqtrd 4450 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  <_  y
)
101 elicc2 11699 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  ( x [,] y )  <-> 
( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  RR  /\  x  <_  ( (
t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  /\  ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  <_  y )
) )
10261, 67, 101syl2anc 665 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  ( x [,] y
)  <->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  RR  /\  x  <_ 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  /\  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  <_ 
y ) ) )
10369, 90, 100, 102mpbir3and 1188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  ( x [,] y ) )
10456, 103sseldd 3471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
105104ralrimiva 2846 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
106105adantr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A )
107 oveq1 6312 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( 1  -  s )  ->  (
t  x.  x )  =  ( ( 1  -  s )  x.  x ) )
108 oveq2 6313 . . . . . . . . . . . . . . . . 17  |-  ( t  =  ( 1  -  s )  ->  (
1  -  t )  =  ( 1  -  ( 1  -  s
) ) )
109108oveq1d 6320 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( 1  -  s )  ->  (
( 1  -  t
)  x.  y )  =  ( ( 1  -  ( 1  -  s ) )  x.  y ) )
110107, 109oveq12d 6323 . . . . . . . . . . . . . . 15  |-  ( t  =  ( 1  -  s )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  =  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) ) )
111110eleq1d 2498 . . . . . . . . . . . . . 14  |-  ( t  =  ( 1  -  s )  ->  (
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A  <->  ( (
( 1  -  s
)  x.  x )  +  ( ( 1  -  ( 1  -  s ) )  x.  y ) )  e.  A ) )
112111rspcv 3184 . . . . . . . . . . . . 13  |-  ( ( 1  -  s )  e.  ( 0 [,] 1 )  ->  ( A. t  e.  (
0 [,] 1 ) ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A  -> 
( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  (
1  -  s ) )  x.  y ) )  e.  A ) )
11347, 106, 112sylc 62 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) )  e.  A
)
11445, 113eqeltrd 2517 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  e.  A
)
115114ralrimiva 2846 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. s  e.  ( 0 [,] 1
) ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  e.  A
)
116 oveq1 6312 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
s  x.  y )  =  ( t  x.  y ) )
117 oveq2 6313 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  (
1  -  s )  =  ( 1  -  t ) )
118117oveq1d 6320 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( 1  -  s
)  x.  x )  =  ( ( 1  -  t )  x.  x ) )
119116, 118oveq12d 6323 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( s  x.  y
)  +  ( ( 1  -  s )  x.  x ) )  =  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) ) )
120119eleq1d 2498 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
( ( s  x.  y )  +  ( ( 1  -  s
)  x.  x ) )  e.  A  <->  ( (
t  x.  y )  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
121120cbvralv 3062 . . . . . . . . . 10  |-  ( A. s  e.  ( 0 [,] 1 ) ( ( s  x.  y
)  +  ( ( 1  -  s )  x.  x ) )  e.  A  <->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) )  e.  A
)
122115, 121sylib 199 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) )  e.  A
)
12318, 23, 10, 122, 105wloglei 10145 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
124123r19.21bi 2801 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
125124anasss 651 . . . . . 6  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( ( x  e.  A  /\  y  e.  A )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A )
12613, 125sylan2b 477 . . . . 5  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  t  e.  (
0 [,] 1 ) ) )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A )
127 eqid 2429 . . . . 5  |-  ( (
TopOpen ` fld )t  A )  =  ( ( TopOpen ` fld )t  A )
12812, 126, 4, 127cvxscon 29754 . . . 4  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  (
( TopOpen ` fld )t  A )  e. SCon )
1299, 128eqeltrrd 2518 . . 3  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  J  e. SCon )
130129ex 435 . 2  |-  ( A 
C_  RR  ->  ( J  e.  Con  ->  J  e. SCon ) )
1313, 130impbid2 207 1  |-  ( A 
C_  RR  ->  ( J  e. SCon 
<->  J  e.  Con )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782    C_ wss 3442   class class class wbr 4426   ran crn 4855   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   1c1 9539    + caddc 9541    x. cmul 9543    <_ cle 9675    - cmin 9859   (,)cioo 11635   [,]cicc 11638   ↾t crest 15278   TopOpenctopn 15279   topGenctg 15295  ℂfldccnfld 18905   Conccon 20357  PConcpcon 29730  SConcscon 29731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11783  df-fzo 11914  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-cn 20174  df-cnp 20175  df-con 20358  df-tx 20508  df-hmeo 20701  df-xms 21266  df-ms 21267  df-tms 21268  df-ii 21805  df-htpy 21894  df-phtpy 21895  df-phtpc 21916  df-pcon 29732  df-scon 29733
This theorem is referenced by:  iooscon  29758  iccscon  29759  iccllyscon  29761
  Copyright terms: Public domain W3C validator