MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescom Structured version   Unicode version

Theorem rescom 5118
Description: Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
Assertion
Ref Expression
rescom  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )

Proof of Theorem rescom
StepHypRef Expression
1 incom 3632 . . 3  |-  ( B  i^i  C )  =  ( C  i^i  B
)
21reseq2i 5091 . 2  |-  ( A  |`  ( B  i^i  C
) )  =  ( A  |`  ( C  i^i  B ) )
3 resres 5106 . 2  |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )
4 resres 5106 . 2  |-  ( ( A  |`  C )  |`  B )  =  ( A  |`  ( C  i^i  B ) )
52, 3, 43eqtr4i 2441 1  |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1405    i^i cin 3413    |` cres 4825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pr 4630
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-sn 3973  df-pr 3975  df-op 3979  df-opab 4454  df-xp 4829  df-rel 4830  df-res 4835
This theorem is referenced by:  resabs2  5124  setscom  14873  dvres3a  22610  cpnres  22632  dvmptres3  22651
  Copyright terms: Public domain W3C validator