MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescncf Unicode version

Theorem rescncf 18880
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )

Proof of Theorem rescncf
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F  e.  ( A -cn-> B ) )
2 cncfrss 18874 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
32adantl 453 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A  C_  CC )
4 cncfrss2 18875 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
54adantl 453 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  B  C_  CC )
6 elcncf 18872 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
73, 5, 6syl2anc 643 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
81, 7mpbid 202 . . . . 5  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98simpld 446 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F : A --> B )
10 simpl 444 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  A )
11 fssres 5569 . . . 4  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
129, 10, 11syl2anc 643 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C ) : C --> B )
138simprd 450 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
14 ssralv 3367 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
15 ssralv 3367 . . . . . . . . 9  |-  ( C 
C_  A  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
16 fvres 5704 . . . . . . . . . . . . . . 15  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
17 fvres 5704 . . . . . . . . . . . . . . 15  |-  ( w  e.  C  ->  (
( F  |`  C ) `
 w )  =  ( F `  w
) )
1816, 17oveqan12d 6059 . . . . . . . . . . . . . 14  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) )  =  ( ( F `  x )  -  ( F `  w )
) )
1918fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
2019breq1d 4182 . . . . . . . . . . . 12  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
2120imbi2d 308 . . . . . . . . . . 11  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y )  <->  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) ) )
2221biimprd 215 . . . . . . . . . 10  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2322ralimdva 2744 . . . . . . . . 9  |-  ( x  e.  C  ->  ( A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2415, 23sylan9 639 . . . . . . . 8  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2524reximdv 2777 . . . . . . 7  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2625ralimdv 2745 . . . . . 6  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2726ralimdva 2744 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2814, 27syld 42 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2910, 13, 28sylc 58 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) )
3010, 3sstrd 3318 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  CC )
31 elcncf 18872 . . . 4  |-  ( ( C  C_  CC  /\  B  C_  CC )  ->  (
( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3230, 5, 31syl2anc 643 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( ( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3312, 29, 32mpbir2and 889 . 2  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C )  e.  ( C -cn-> B ) )
3433ex 424 1  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   class class class wbr 4172    |` cres 4839   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944    < clt 9076    - cmin 9247   RR+crp 10568   abscabs 11994   -cn->ccncf 18859
This theorem is referenced by:  cpnres  19776  dvlip  19830  dvlip2  19832  c1liplem1  19833  c1lip2  19835  dvgt0lem1  19839  dvivthlem1  19845  dvne0  19848  lhop1lem  19850  dvcnvrelem1  19854  dvcnvrelem2  19855  dvcvx  19857  dvfsumle  19858  dvfsumabs  19860  dvfsumlem2  19864  ftc2ditglem  19882  itgparts  19884  itgsubstlem  19885  psercn2  20292  abelth  20310  abelth2  20311  efcvx  20318  pige3  20378  dvrelog  20481  logcn  20491  logccv  20507  loglesqr  20595  ftc1cnnclem  26177  cncfres  26364  lhe4.4ex1a  27414  cncfmptss  27584
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-map 6979  df-cncf 18861
  Copyright terms: Public domain W3C validator