MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescncf Structured version   Visualization version   Unicode version

Theorem rescncf 21977
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )

Proof of Theorem rescncf
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 467 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F  e.  ( A -cn-> B ) )
2 cncfrss 21971 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
32adantl 472 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A  C_  CC )
4 cncfrss2 21972 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
54adantl 472 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  B  C_  CC )
6 elcncf 21969 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
73, 5, 6syl2anc 671 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
81, 7mpbid 215 . . . . 5  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98simpld 465 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F : A --> B )
10 simpl 463 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  A )
119, 10fssresd 5772 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C ) : C --> B )
128simprd 469 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
13 ssralv 3504 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
14 ssralv 3504 . . . . . . . . 9  |-  ( C 
C_  A  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
15 fvres 5901 . . . . . . . . . . . . . . 15  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
16 fvres 5901 . . . . . . . . . . . . . . 15  |-  ( w  e.  C  ->  (
( F  |`  C ) `
 w )  =  ( F `  w
) )
1715, 16oveqan12d 6333 . . . . . . . . . . . . . 14  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) )  =  ( ( F `  x )  -  ( F `  w )
) )
1817fveq2d 5891 . . . . . . . . . . . . 13  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
1918breq1d 4425 . . . . . . . . . . . 12  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
2019imbi2d 322 . . . . . . . . . . 11  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y )  <->  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) ) )
2120biimprd 231 . . . . . . . . . 10  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2221ralimdva 2807 . . . . . . . . 9  |-  ( x  e.  C  ->  ( A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2314, 22sylan9 667 . . . . . . . 8  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2423reximdv 2872 . . . . . . 7  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2524ralimdv 2809 . . . . . 6  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2625ralimdva 2807 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2713, 26syld 45 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2810, 12, 27sylc 62 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) )
2910, 3sstrd 3453 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  CC )
30 elcncf 21969 . . . 4  |-  ( ( C  C_  CC  /\  B  C_  CC )  ->  (
( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3129, 5, 30syl2anc 671 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( ( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3211, 28, 31mpbir2and 938 . 2  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C )  e.  ( C -cn-> B ) )
3332ex 440 1  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    e. wcel 1897   A.wral 2748   E.wrex 2749    C_ wss 3415   class class class wbr 4415    |` cres 4854   -->wf 5596   ` cfv 5600  (class class class)co 6314   CCcc 9562    < clt 9700    - cmin 9885   RR+crp 11330   abscabs 13345   -cn->ccncf 21956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609  ax-cnex 9620
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-fv 5608  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-map 7499  df-cncf 21958
This theorem is referenced by:  cpnres  22939  dvlip  22993  dvlip2  22995  c1liplem1  22996  c1lip2  22998  dvgt0lem1  23002  dvivthlem1  23008  dvne0  23011  lhop1lem  23013  dvcnvrelem1  23017  dvcnvrelem2  23018  dvcvx  23020  dvfsumle  23021  dvfsumabs  23023  dvfsumlem2  23027  ftc2ditglem  23045  itgparts  23047  itgsubstlem  23048  psercn2  23426  abelth  23444  abelth2  23445  efcvx  23452  pige3  23520  dvrelog  23630  logcn  23640  logccv  23656  loglesqrt  23746  ftc1cnnclem  32059  ftc2nc  32070  areacirc  32081  cncfres  32141  itgpowd  36143  areaquad  36145  lhe4.4ex1a  36721  cncfmptss  37702  resincncf  37789  dvbdfbdioolem1  37837  itgsbtaddcnst  37896  fourierdlem38  38045  fourierdlem46  38053  fourierdlem72  38079  fourierdlem90  38097  fourierdlem111  38118  fouriercn  38133
  Copyright terms: Public domain W3C validator