MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs Structured version   Unicode version

Theorem rescabs 15248
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
rescabs.c  |-  ( ph  ->  C  e.  V )
rescabs.h  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
rescabs.j  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
rescabs.s  |-  ( ph  ->  S  e.  W )
rescabs.t  |-  ( ph  ->  T  C_  S )
Assertion
Ref Expression
rescabs  |-  ( ph  ->  ( ( C  |`cat  H
)  |`cat  J )  =  ( C  |`cat  J ) )

Proof of Theorem rescabs
StepHypRef Expression
1 eqid 2457 . . . 4  |-  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat  J )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat  J )
2 ovex 6324 . . . . 5  |-  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V
32a1i 11 . . . 4  |-  ( ph  ->  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V )
4 rescabs.s . . . . 5  |-  ( ph  ->  S  e.  W )
5 rescabs.t . . . . 5  |-  ( ph  ->  T  C_  S )
64, 5ssexd 4603 . . . 4  |-  ( ph  ->  T  e.  _V )
7 rescabs.j . . . 4  |-  ( ph  ->  J  Fn  ( T  X.  T ) )
81, 3, 6, 7rescval2 15243 . . 3  |-  ( ph  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat 
J )  =  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
9 simpr 461 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Base `  ( Cs  S ) )  C_  T )
102a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V )
116adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  T  e.  _V )
12 eqid 2457 . . . . . . . 8  |-  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )
13 baseid 14691 . . . . . . . . 9  |-  Base  = Slot  ( Base `  ndx )
14 1re 9612 . . . . . . . . . . 11  |-  1  e.  RR
15 1nn 10567 . . . . . . . . . . . 12  |-  1  e.  NN
16 4nn0 10835 . . . . . . . . . . . 12  |-  4  e.  NN0
17 1nn0 10832 . . . . . . . . . . . 12  |-  1  e.  NN0
18 1lt10 10767 . . . . . . . . . . . 12  |-  1  <  10
1915, 16, 17, 18declti 11025 . . . . . . . . . . 11  |-  1  < ; 1
4
2014, 19ltneii 9714 . . . . . . . . . 10  |-  1  =/= ; 1 4
21 basendx 14695 . . . . . . . . . . 11  |-  ( Base `  ndx )  =  1
22 homndx 14830 . . . . . . . . . . 11  |-  ( Hom  `  ndx )  = ; 1 4
2321, 22neeq12i 2746 . . . . . . . . . 10  |-  ( (
Base `  ndx )  =/=  ( Hom  `  ndx ) 
<->  1  =/= ; 1 4 )
2420, 23mpbir 209 . . . . . . . . 9  |-  ( Base `  ndx )  =/=  ( Hom  `  ndx )
2513, 24setsnid 14687 . . . . . . . 8  |-  ( Base `  ( Cs  S ) )  =  ( Base `  (
( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
2612, 25ressid2 14698 . . . . . . 7  |-  ( ( ( Base `  ( Cs  S ) )  C_  T  /\  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V  /\  T  e.  _V )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
279, 10, 11, 26syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
2827oveq1d 6311 . . . . 5  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
29 ovex 6324 . . . . . 6  |-  ( Cs  S )  e.  _V
30 xpexg 6601 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  T  e.  _V )  ->  ( T  X.  T
)  e.  _V )
316, 6, 30syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( T  X.  T
)  e.  _V )
32 fnex 6140 . . . . . . . 8  |-  ( ( J  Fn  ( T  X.  T )  /\  ( T  X.  T
)  e.  _V )  ->  J  e.  _V )
337, 31, 32syl2anc 661 . . . . . . 7  |-  ( ph  ->  J  e.  _V )
3433adantr 465 . . . . . 6  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  J  e.  _V )
35 setsabs 14674 . . . . . 6  |-  ( ( ( Cs  S )  e.  _V  /\  J  e.  _V )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
3629, 34, 35sylancr 663 . . . . 5  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
37 eqid 2457 . . . . . . . . . . . . . 14  |-  ( Cs  S )  =  ( Cs  S )
38 eqid 2457 . . . . . . . . . . . . . 14  |-  ( Base `  C )  =  (
Base `  C )
3937, 38ressbas 14700 . . . . . . . . . . . . 13  |-  ( S  e.  W  ->  ( S  i^i  ( Base `  C
) )  =  (
Base `  ( Cs  S
) ) )
404, 39syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( S  i^i  ( Base `  C ) )  =  ( Base `  ( Cs  S ) ) )
4140sseq1d 3526 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  i^i  ( Base `  C )
)  C_  T  <->  ( Base `  ( Cs  S ) )  C_  T ) )
4241biimpar 485 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  C_  T
)
43 inss2 3715 . . . . . . . . . . 11  |-  ( S  i^i  ( Base `  C
) )  C_  ( Base `  C )
4443a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  C_  ( Base `  C ) )
4542, 44ssind 3718 . . . . . . . . 9  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  C_  ( T  i^i  ( Base `  C
) ) )
465adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  T  C_  S )
47 ssrin 3719 . . . . . . . . . 10  |-  ( T 
C_  S  ->  ( T  i^i  ( Base `  C
) )  C_  ( S  i^i  ( Base `  C
) ) )
4846, 47syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( T  i^i  ( Base `  C
) )  C_  ( S  i^i  ( Base `  C
) ) )
4945, 48eqssd 3516 . . . . . . . 8  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( S  i^i  ( Base `  C
) )  =  ( T  i^i  ( Base `  C ) ) )
5049oveq2d 6312 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  ( S  i^i  ( Base `  C ) ) )  =  ( Cs  ( T  i^i  ( Base `  C ) ) ) )
514adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  S  e.  W )
5238ressinbas 14706 . . . . . . . 8  |-  ( S  e.  W  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
5351, 52syl 16 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
5438ressinbas 14706 . . . . . . . 8  |-  ( T  e.  _V  ->  ( Cs  T )  =  ( Cs  ( T  i^i  ( Base `  C ) ) ) )
5511, 54syl 16 . . . . . . 7  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  T )  =  ( Cs  ( T  i^i  ( Base `  C ) ) ) )
5650, 53, 553eqtr4d 2508 . . . . . 6  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  S )  =  ( Cs  T ) )
5756oveq1d 6311 . . . . 5  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
5828, 36, 573eqtrd 2502 . . . 4  |-  ( (
ph  /\  ( Base `  ( Cs  S ) )  C_  T )  ->  (
( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
59 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  -.  ( Base `  ( Cs  S ) )  C_  T )
602a1i 11 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V )
616adantr 465 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  T  e.  _V )
6212, 25ressval2 14699 . . . . . . . 8  |-  ( ( -.  ( Base `  ( Cs  S ) )  C_  T  /\  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  e.  _V  /\  T  e.  _V )  ->  (
( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
6359, 60, 61, 62syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
6429a1i 11 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Cs  S )  e.  _V )
6524necomi 2727 . . . . . . . . 9  |-  ( Hom  `  ndx )  =/=  ( Base `  ndx )
6665a1i 11 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( Hom  `  ndx )  =/=  ( Base `  ndx ) )
67 rescabs.h . . . . . . . . . 10  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
68 xpexg 6601 . . . . . . . . . . 11  |-  ( ( S  e.  W  /\  S  e.  W )  ->  ( S  X.  S
)  e.  _V )
694, 4, 68syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( S  X.  S
)  e.  _V )
70 fnex 6140 . . . . . . . . . 10  |-  ( ( H  Fn  ( S  X.  S )  /\  ( S  X.  S
)  e.  _V )  ->  H  e.  _V )
7167, 69, 70syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  H  e.  _V )
7271adantr 465 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  H  e.  _V )
73 fvex 5882 . . . . . . . . . 10  |-  ( Base `  ( Cs  S ) )  e. 
_V
7473inex2 4598 . . . . . . . . 9  |-  ( T  i^i  ( Base `  ( Cs  S ) ) )  e.  _V
7574a1i 11 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( T  i^i  ( Base `  ( Cs  S ) ) )  e.  _V )
76 fvex 5882 . . . . . . . . 9  |-  ( Hom  `  ndx )  e.  _V
77 fvex 5882 . . . . . . . . 9  |-  ( Base `  ndx )  e.  _V
7876, 77setscom 14675 . . . . . . . 8  |-  ( ( ( ( Cs  S )  e.  _V  /\  ( Hom  `  ndx )  =/=  ( Base `  ndx ) )  /\  ( H  e.  _V  /\  ( T  i^i  ( Base `  ( Cs  S ) ) )  e.  _V ) )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )  =  ( ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. ) sSet  <.
( Hom  `  ndx ) ,  H >. ) )
7964, 66, 72, 75, 78syl22anc 1229 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. )  =  (
( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
80 eqid 2457 . . . . . . . . . . 11  |-  ( ( Cs  S )s  T )  =  ( ( Cs  S )s  T )
81 eqid 2457 . . . . . . . . . . 11  |-  ( Base `  ( Cs  S ) )  =  ( Base `  ( Cs  S ) )
8280, 81ressval2 14699 . . . . . . . . . 10  |-  ( ( -.  ( Base `  ( Cs  S ) )  C_  T  /\  ( Cs  S )  e.  _V  /\  T  e.  _V )  ->  (
( Cs  S )s  T )  =  ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
8359, 64, 61, 82syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S )s  T )  =  ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) ) >. )
)
844adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  S  e.  W )
855adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  T  C_  S )
86 ressabs 14709 . . . . . . . . . 10  |-  ( ( S  e.  W  /\  T  C_  S )  -> 
( ( Cs  S )s  T )  =  ( Cs  T ) )
8784, 85, 86syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S )s  T )  =  ( Cs  T ) )
8883, 87eqtr3d 2500 . . . . . . . 8  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. )  =  ( Cs  T ) )
8988oveq1d 6311 . . . . . . 7  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Base `  ndx ) ,  ( T  i^i  ( Base `  ( Cs  S ) ) )
>. ) sSet  <. ( Hom  `  ndx ) ,  H >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
9063, 79, 893eqtrd 2502 . . . . . 6  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
9190oveq1d 6311 . . . . 5  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
92 ovex 6324 . . . . . 6  |-  ( Cs  T )  e.  _V
9333adantr 465 . . . . . 6  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  J  e.  _V )
94 setsabs 14674 . . . . . 6  |-  ( ( ( Cs  T )  e.  _V  /\  J  e.  _V )  ->  ( ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
9592, 93, 94sylancr 663 . . . . 5  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  H >. ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
9691, 95eqtrd 2498 . . . 4  |-  ( (
ph  /\  -.  ( Base `  ( Cs  S ) )  C_  T )  ->  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
9758, 96pm2.61dan 791 . . 3  |-  ( ph  ->  ( ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )s  T ) sSet  <. ( Hom  `  ndx ) ,  J >. )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
988, 97eqtrd 2498 . 2  |-  ( ph  ->  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat 
J )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
99 eqid 2457 . . . 4  |-  ( C  |`cat 
H )  =  ( C  |`cat  H )
100 rescabs.c . . . 4  |-  ( ph  ->  C  e.  V )
10199, 100, 4, 67rescval2 15243 . . 3  |-  ( ph  ->  ( C  |`cat  H )  =  ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. ) )
102101oveq1d 6311 . 2  |-  ( ph  ->  ( ( C  |`cat  H
)  |`cat  J )  =  ( ( ( Cs  S ) sSet  <. ( Hom  `  ndx ) ,  H >. )  |`cat 
J ) )
103 eqid 2457 . . 3  |-  ( C  |`cat 
J )  =  ( C  |`cat  J )
104103, 100, 6, 7rescval2 15243 . 2  |-  ( ph  ->  ( C  |`cat  J )  =  ( ( Cs  T ) sSet  <. ( Hom  `  ndx ) ,  J >. ) )
10598, 102, 1043eqtr4d 2508 1  |-  ( ph  ->  ( ( C  |`cat  H
)  |`cat  J )  =  ( C  |`cat  J ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   _Vcvv 3109    i^i cin 3470    C_ wss 3471   <.cop 4038    X. cxp 5006    Fn wfn 5589   ` cfv 5594  (class class class)co 6296   1c1 9510   4c4 10608  ;cdc 11000   ndxcnx 14640   sSet csts 14641   Basecbs 14643   ↾s cress 14644   Hom chom 14722    |`cat cresc 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-hom 14735  df-resc 15226
This theorem is referenced by:  subsubc  15268  fldc  32993  fldcOLD  33012
  Copyright terms: Public domain W3C validator