MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resasplit Structured version   Unicode version

Theorem resasplit 5742
Description: If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
resasplit  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )

Proof of Theorem resasplit
StepHypRef Expression
1 fnresdm 5677 . . . 4  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
2 fnresdm 5677 . . . 4  |-  ( G  Fn  B  ->  ( G  |`  B )  =  G )
3 uneq12 3636 . . . 4  |-  ( ( ( F  |`  A )  =  F  /\  ( G  |`  B )  =  G )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
41, 2, 3syl2an 477 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G ) )
543adant3 1015 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
6 simp3 997 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )
76uneq1d 3640 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
87uneq2d 3641 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  u.  ( ( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
9 inundif 3889 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
109reseq2i 5257 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( F  |`  A )
11 resundi 5274 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
1210, 11eqtr3i 2472 . . . . . 6  |-  ( F  |`  A )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
13 incom 3674 . . . . . . . . . 10  |-  ( A  i^i  B )  =  ( B  i^i  A
)
1413uneq1i 3637 . . . . . . . . 9  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
15 inundif 3889 . . . . . . . . 9  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  =  B
1614, 15eqtri 2470 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  B
1716reseq2i 5257 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( G  |`  B )
18 resundi 5274 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
1917, 18eqtr3i 2472 . . . . . 6  |-  ( G  |`  B )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
2012, 19uneq12i 3639 . . . . 5  |-  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
218, 20syl6reqr 2501 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( F  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
22 un4 3647 . . . 4  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )
2321, 22syl6eq 2498 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) ) )
24 unidm 3630 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  =  ( F  |`  ( A  i^i  B
) )
2524uneq1i 3637 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
2623, 25syl6eq 2498 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
275, 26eqtr3d 2484 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 972    = wceq 1381    \ cdif 3456    u. cun 3457    i^i cin 3458    |` cres 4988    Fn wfn 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4555  ax-nul 4563  ax-pr 4673
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-nul 3769  df-if 3924  df-sn 4012  df-pr 4014  df-op 4018  df-br 4435  df-opab 4493  df-xp 4992  df-rel 4993  df-dm 4996  df-res 4998  df-fun 5577  df-fn 5578
This theorem is referenced by:  fresaun  5743  fresaunres2  5744
  Copyright terms: Public domain W3C validator