MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resasplit Structured version   Unicode version

Theorem resasplit 5766
Description: If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
resasplit  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )

Proof of Theorem resasplit
StepHypRef Expression
1 fnresdm 5699 . . . 4  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
2 fnresdm 5699 . . . 4  |-  ( G  Fn  B  ->  ( G  |`  B )  =  G )
3 uneq12 3615 . . . 4  |-  ( ( ( F  |`  A )  =  F  /\  ( G  |`  B )  =  G )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
41, 2, 3syl2an 479 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G ) )
543adant3 1025 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( F  u.  G
) )
6 simp3 1007 . . . . . . 7  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )
76uneq1d 3619 . . . . . 6  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
87uneq2d 3620 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B
) ) )  u.  ( ( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
9 inundif 3873 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( A  \  B ) )  =  A
109reseq2i 5117 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( F  |`  A )
11 resundi 5133 . . . . . . 7  |-  ( F  |`  ( ( A  i^i  B )  u.  ( A 
\  B ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
1210, 11eqtr3i 2453 . . . . . 6  |-  ( F  |`  A )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )
13 incom 3655 . . . . . . . . . 10  |-  ( A  i^i  B )  =  ( B  i^i  A
)
1413uneq1i 3616 . . . . . . . . 9  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
15 inundif 3873 . . . . . . . . 9  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  =  B
1614, 15eqtri 2451 . . . . . . . 8  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  B
1716reseq2i 5117 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( G  |`  B )
18 resundi 5133 . . . . . . 7  |-  ( G  |`  ( ( A  i^i  B )  u.  ( B 
\  A ) ) )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
1917, 18eqtr3i 2453 . . . . . 6  |-  ( G  |`  B )  =  ( ( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) )
2012, 19uneq12i 3618 . . . . 5  |-  ( ( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( G  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
218, 20syl6reqr 2482 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  \  B ) ) )  u.  ( ( F  |`  ( A  i^i  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
22 un4 3626 . . . 4  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  \  B ) ) )  u.  (
( F  |`  ( A  i^i  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) )
2321, 22syl6eq 2479 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( ( F  |`  ( A  i^i  B
) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A
) ) ) ) )
24 unidm 3609 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  =  ( F  |`  ( A  i^i  B
) )
2524uneq1i 3616 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( F  |`  ( A  i^i  B ) ) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) )
2623, 25syl6eq 2479 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  A )  u.  ( G  |`  B ) )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
275, 26eqtr3d 2465 1  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    = wceq 1437    \ cdif 3433    u. cun 3434    i^i cin 3435    |` cres 4851    Fn wfn 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-sep 4543  ax-nul 4551  ax-pr 4656
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-sn 3997  df-pr 3999  df-op 4003  df-br 4421  df-opab 4480  df-xp 4855  df-rel 4856  df-dm 4859  df-res 4861  df-fun 5599  df-fn 5600
This theorem is referenced by:  fresaun  5767  fresaunres2  5768
  Copyright terms: Public domain W3C validator