MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rerest Structured version   Unicode version

Theorem rerest 21037
Description: The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.)
Hypotheses
Ref Expression
tgioo2.1  |-  J  =  ( TopOpen ` fld )
rerest.2  |-  R  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
rerest  |-  ( A 
C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )

Proof of Theorem rerest
StepHypRef Expression
1 rerest.2 . . . 4  |-  R  =  ( topGen `  ran  (,) )
2 tgioo2.1 . . . . 5  |-  J  =  ( TopOpen ` fld )
32tgioo2 21036 . . . 4  |-  ( topGen ` 
ran  (,) )  =  ( Jt  RR )
41, 3eqtri 2489 . . 3  |-  R  =  ( Jt  RR )
54oveq1i 6285 . 2  |-  ( Rt  A )  =  ( ( Jt  RR )t  A )
62cnfldtop 21019 . . 3  |-  J  e. 
Top
7 reex 9572 . . 3  |-  RR  e.  _V
8 restabs 19425 . . 3  |-  ( ( J  e.  Top  /\  A  C_  RR  /\  RR  e.  _V )  ->  (
( Jt  RR )t  A )  =  ( Jt  A ) )
96, 7, 8mp3an13 1310 . 2  |-  ( A 
C_  RR  ->  ( ( Jt  RR )t  A )  =  ( Jt  A ) )
105, 9syl5req 2514 1  |-  ( A 
C_  RR  ->  ( Jt  A )  =  ( Rt  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1374    e. wcel 1762   _Vcvv 3106    C_ wss 3469   ran crn 4993   ` cfv 5579  (class class class)co 6275   RRcr 9480   (,)cioo 11518   ↾t crest 14665   TopOpenctopn 14666   topGenctg 14682  ℂfldccnfld 18184   Topctop 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-fz 11662  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-plusg 14557  df-mulr 14558  df-starv 14559  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-rest 14667  df-topn 14668  df-topgen 14688  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-xms 20551  df-ms 20552
This theorem is referenced by:  xrrest2  21041  cnmptre  21155  cnheiborlem  21182  cnmbf  21794  lhop2  22144  lhop  22145  cxpcn3  22843  rescon  28181  ivthALT  29581  limciccioolb  30982  limcicciooub  30998
  Copyright terms: Public domain W3C validator