MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repswswrd Structured version   Visualization version   Unicode version

Theorem repswswrd 12941
Description: A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption N <_ L is required, because otherwise ( L < N ):  ( ( S repeatS  L ) substr  <. M ,  N >. )  =  (/), but for M < N  ( S repeatS  ( N  -  M )
) )  =/=  (/)! The proof is relatively long because the border cases ( M  =  N,  -.  ( M..^ N )  C_  ( 0..^ L ) must have been considered. (Contributed by AV, 6-Nov-2018.)
Assertion
Ref Expression
repswswrd  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
( S repeatS  L ) substr  <. M ,  N >. )  =  ( S repeatS  ( N  -  M )
) )

Proof of Theorem repswswrd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 repsw 12932 . . . . . 6  |-  ( ( S  e.  V  /\  L  e.  NN0 )  -> 
( S repeatS  L )  e. Word  V )
2 nn0z 10984 . . . . . . 7  |-  ( M  e.  NN0  ->  M  e.  ZZ )
3 nn0z 10984 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
42, 3anim12i 576 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  ZZ  /\  N  e.  ZZ ) )
51, 4anim12i 576 . . . . 5  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  (
( S repeatS  L )  e. Word  V  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )
6 3anass 1011 . . . . 5  |-  ( ( ( S repeatS  L )  e. Word  V  /\  M  e.  ZZ  /\  N  e.  ZZ )  <->  ( ( S repeatS  L )  e. Word  V  /\  ( M  e.  ZZ  /\  N  e.  ZZ ) ) )
75, 6sylibr 217 . . . 4  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  (
( S repeatS  L )  e. Word  V  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
873adant3 1050 . . 3  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
( S repeatS  L )  e. Word  V  /\  M  e.  ZZ  /\  N  e.  ZZ ) )
9 swrdval 12827 . . 3  |-  ( ( ( S repeatS  L )  e. Word  V  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( S repeatS  L ) substr  <. M ,  N >. )  =  if ( ( M..^ N )  C_  dom  ( S repeatS  L ) ,  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) ) ,  (/) ) )
108, 9syl 17 . 2  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
( S repeatS  L ) substr  <. M ,  N >. )  =  if ( ( M..^ N )  C_  dom  ( S repeatS  L ) ,  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) ) ,  (/) ) )
11 repsf 12930 . . . . . 6  |-  ( ( S  e.  V  /\  L  e.  NN0 )  -> 
( S repeatS  L ) : ( 0..^ L ) --> V )
12113ad2ant1 1051 . . . . 5  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( S repeatS  L ) : ( 0..^ L ) --> V )
13 fdm 5745 . . . . 5  |-  ( ( S repeatS  L ) : ( 0..^ L ) --> V  ->  dom  ( S repeatS  L )  =  ( 0..^ L ) )
1412, 13syl 17 . . . 4  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  dom  ( S repeatS  L )  =  ( 0..^ L ) )
1514sseq2d 3446 . . 3  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
( M..^ N ) 
C_  dom  ( S repeatS  L )  <->  ( M..^ N
)  C_  ( 0..^ L ) ) )
1615ifbid 3894 . 2  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  if ( ( M..^ N
)  C_  dom  ( S repeatS  L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  if (
( M..^ N ) 
C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M ) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) ) )
17 fzon 11966 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <_  M  <->  ( M..^ N )  =  (/) ) )
184, 17syl 17 . . . . . . . . . 10  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <_  M  <->  ( M..^ N )  =  (/) ) )
1918adantl 473 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( N  <_  M  <->  ( M..^ N )  =  (/) ) )
2019biimpac 494 . . . . . . . 8  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( M..^ N
)  =  (/) )
21 0ss 3766 . . . . . . . 8  |-  (/)  C_  (
0..^ L )
2220, 21syl6eqss 3468 . . . . . . 7  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( M..^ N
)  C_  ( 0..^ L ) )
23 iftrue 3878 . . . . . . 7  |-  ( ( M..^ N )  C_  ( 0..^ L )  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) ) )
2422, 23syl 17 . . . . . 6  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  if ( ( M..^ N )  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M ) )  |->  ( ( S repeatS  L ) `  ( x  +  M
) ) ) ,  (/) )  =  (
x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) )
25 nn0re 10902 . . . . . . . . . . . 12  |-  ( M  e.  NN0  ->  M  e.  RR )
26 nn0re 10902 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  N  e.  RR )
2725, 26anim12ci 577 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  e.  RR  /\  M  e.  RR ) )
2827adantl 473 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( N  e.  RR  /\  M  e.  RR ) )
29 suble0 10149 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( ( N  -  M )  <_  0  <->  N  <_  M ) )
3028, 29syl 17 . . . . . . . . 9  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  (
( N  -  M
)  <_  0  <->  N  <_  M ) )
3130biimparc 495 . . . . . . . 8  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( N  -  M )  <_  0
)
32 0z 10972 . . . . . . . . 9  |-  0  e.  ZZ
33 zsubcl 11003 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  -  M
)  e.  ZZ )
343, 2, 33syl2anr 486 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  -  M
)  e.  ZZ )
3534adantl 473 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( N  -  M )  e.  ZZ )
3635adantl 473 . . . . . . . . 9  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( N  -  M )  e.  ZZ )
37 fzon 11966 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( N  -  M
)  e.  ZZ )  ->  ( ( N  -  M )  <_ 
0  <->  ( 0..^ ( N  -  M ) )  =  (/) ) )
3832, 36, 37sylancr 676 . . . . . . . 8  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( ( N  -  M )  <_ 
0  <->  ( 0..^ ( N  -  M ) )  =  (/) ) )
3931, 38mpbid 215 . . . . . . 7  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( 0..^ ( N  -  M ) )  =  (/) )
4039mpteq1d 4477 . . . . . 6  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) )  =  ( x  e.  (/)  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) )
41 oveq2 6316 . . . . . . . . . . . . 13  |-  ( M  =  N  ->  ( N  -  M )  =  ( N  -  N ) )
4241oveq2d 6324 . . . . . . . . . . . 12  |-  ( M  =  N  ->  ( S repeatS  ( N  -  M
) )  =  ( S repeatS  ( N  -  N ) ) )
43 nn0cn 10903 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  N  e.  CC )
4443adantl 473 . . . . . . . . . . . . . . . 16  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  CC )
4544subidd 9993 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  -  N
)  =  0 )
4645adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( N  -  N )  =  0 )
4746oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( S repeatS  ( N  -  N
) )  =  ( S repeatS  0 ) )
48 repsw0 12934 . . . . . . . . . . . . . 14  |-  ( S  e.  V  ->  ( S repeatS  0 )  =  (/) )
4948ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( S repeatS  0 )  =  (/) )
5047, 49eqtrd 2505 . . . . . . . . . . . 12  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( S repeatS  ( N  -  N
) )  =  (/) )
5142, 50sylan9eqr 2527 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) )  /\  M  =  N )  ->  ( S repeatS  ( N  -  M ) )  =  (/) )
5251ex 441 . . . . . . . . . 10  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( M  =  N  ->  ( S repeatS  ( N  -  M ) )  =  (/) ) )
5352adantl 473 . . . . . . . . 9  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( M  =  N  ->  ( S repeatS  ( N  -  M ) )  =  (/) ) )
5453com12 31 . . . . . . . 8  |-  ( M  =  N  ->  (
( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( S repeatS  ( N  -  M )
)  =  (/) ) )
55 elnn0z 10974 . . . . . . . . . . . . . . 15  |-  ( ( N  -  M )  e.  NN0  <->  ( ( N  -  M )  e.  ZZ  /\  0  <_ 
( N  -  M
) ) )
56 subge0 10148 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( N  e.  RR  /\  M  e.  RR )  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
5726, 25, 56syl2anr 486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <_  ( N  -  M )  <->  M  <_  N ) )
5825, 26anim12i 576 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  e.  RR  /\  N  e.  RR ) )
59 letri3 9737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  =  N  <-> 
( M  <_  N  /\  N  <_  M ) ) )
6160biimprd 231 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  <_  N  /\  N  <_  M
)  ->  M  =  N ) )
6261expd 443 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <_  N  ->  ( N  <_  M  ->  M  =  N ) ) )
6357, 62sylbid 223 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( 0  <_  ( N  -  M )  ->  ( N  <_  M  ->  M  =  N ) ) )
6463com23 80 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <_  M  ->  ( 0  <_  ( N  -  M )  ->  M  =  N ) ) )
6564adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( N  <_  M  ->  (
0  <_  ( N  -  M )  ->  M  =  N ) ) )
6665impcom 437 . . . . . . . . . . . . . . . . 17  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( 0  <_ 
( N  -  M
)  ->  M  =  N ) )
6766com12 31 . . . . . . . . . . . . . . . 16  |-  ( 0  <_  ( N  -  M )  ->  (
( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  M  =  N ) )
6867adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( ( N  -  M
)  e.  ZZ  /\  0  <_  ( N  -  M ) )  -> 
( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  M  =  N ) )
6955, 68sylbi 200 . . . . . . . . . . . . . 14  |-  ( ( N  -  M )  e.  NN0  ->  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  M  =  N ) )
7069com12 31 . . . . . . . . . . . . 13  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( ( N  -  M )  e. 
NN0  ->  M  =  N ) )
7170con3d 140 . . . . . . . . . . . 12  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( -.  M  =  N  ->  -.  ( N  -  M )  e.  NN0 ) )
7271impcom 437 . . . . . . . . . . 11  |-  ( ( -.  M  =  N  /\  ( N  <_  M  /\  ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) ) )  ->  -.  ( N  -  M )  e.  NN0 )
73 df-nel 2644 . . . . . . . . . . 11  |-  ( ( N  -  M )  e/  NN0  <->  -.  ( N  -  M )  e.  NN0 )
7472, 73sylibr 217 . . . . . . . . . 10  |-  ( ( -.  M  =  N  /\  ( N  <_  M  /\  ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) ) )  ->  ( N  -  M )  e/  NN0 )
75 repsundef 12928 . . . . . . . . . 10  |-  ( ( N  -  M )  e/  NN0  ->  ( S repeatS 
( N  -  M
) )  =  (/) )
7674, 75syl 17 . . . . . . . . 9  |-  ( ( -.  M  =  N  /\  ( N  <_  M  /\  ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) ) )  ->  ( S repeatS  ( N  -  M ) )  =  (/) )
7776ex 441 . . . . . . . 8  |-  ( -.  M  =  N  -> 
( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( S repeatS  ( N  -  M )
)  =  (/) ) )
7854, 77pm2.61i 169 . . . . . . 7  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( S repeatS  ( N  -  M )
)  =  (/) )
79 mpt0 5715 . . . . . . 7  |-  ( x  e.  (/)  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) )  =  (/)
8078, 79syl6reqr 2524 . . . . . 6  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  ( x  e.  (/)  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) )  =  ( S repeatS  ( N  -  M ) ) )
8124, 40, 803eqtrd 2509 . . . . 5  |-  ( ( N  <_  M  /\  ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 ) ) )  ->  if ( ( M..^ N )  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M ) )  |->  ( ( S repeatS  L ) `  ( x  +  M
) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M
) ) )
8281expcom 442 . . . 4  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( N  <_  M  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) ) )
83823adant3 1050 . . 3  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( N  <_  M  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) ) )
84 ltnle 9731 . . . . . . 7  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <  N  <->  -.  N  <_  M )
)
8558, 84syl 17 . . . . . 6  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( M  <  N  <->  -.  N  <_  M )
)
8685bicomd 206 . . . . 5  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  N  <_  M 
<->  M  <  N ) )
87863ad2ant2 1052 . . . 4  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( -.  N  <_  M  <->  M  <  N ) )
8823adantr 472 . . . . . . 7  |-  ( ( ( M..^ N ) 
C_  ( 0..^ L )  /\  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N ) )  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) ) )
8943ad2ant2 1052 . . . . . . . . . . 11  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
9089adantr 472 . . . . . . . . . 10  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
91 0zd 10973 . . . . . . . . . . . . 13  |-  ( S  e.  V  ->  0  e.  ZZ )
92 nn0z 10984 . . . . . . . . . . . . 13  |-  ( L  e.  NN0  ->  L  e.  ZZ )
9391, 92anim12i 576 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  L  e.  NN0 )  -> 
( 0  e.  ZZ  /\  L  e.  ZZ ) )
94933ad2ant1 1051 . . . . . . . . . . 11  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
0  e.  ZZ  /\  L  e.  ZZ )
)
9594adantr 472 . . . . . . . . . 10  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  (
0  e.  ZZ  /\  L  e.  ZZ )
)
96 simpr 468 . . . . . . . . . 10  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  M  <  N )
97 ssfzo12bi 12035 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( 0  e.  ZZ  /\  L  e.  ZZ )  /\  M  <  N )  ->  (
( M..^ N ) 
C_  ( 0..^ L )  <->  ( 0  <_  M  /\  N  <_  L
) ) )
9890, 95, 96, 97syl3anc 1292 . . . . . . . . 9  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  (
( M..^ N ) 
C_  ( 0..^ L )  <->  ( 0  <_  M  /\  N  <_  L
) ) )
99 simpl1l 1081 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  S  e.  V )
10099ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N
)  /\  ( 0  <_  M  /\  N  <_  L ) )  /\  x  e.  ( 0..^ ( N  -  M
) ) )  ->  S  e.  V )
101 simpl1r 1082 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  L  e.  NN0 )
102101ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N
)  /\  ( 0  <_  M  /\  N  <_  L ) )  /\  x  e.  ( 0..^ ( N  -  M
) ) )  ->  L  e.  NN0 )
103 elfzonn0 11988 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0..^ ( N  -  M ) )  ->  x  e.  NN0 )
104 nn0addcl 10929 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  NN0  /\  M  e.  NN0 )  -> 
( x  +  M
)  e.  NN0 )
105104expcom 442 . . . . . . . . . . . . . . . . . . 19  |-  ( M  e.  NN0  ->  ( x  e.  NN0  ->  ( x  +  M )  e. 
NN0 ) )
106105adantr 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( x  e.  NN0  ->  ( x  +  M
)  e.  NN0 )
)
1071063ad2ant2 1052 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
x  e.  NN0  ->  ( x  +  M )  e.  NN0 ) )
108107ad2antrr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  e. 
NN0  ->  ( x  +  M )  e.  NN0 ) )
109103, 108syl5com 30 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0..^ ( N  -  M ) )  ->  ( (
( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  +  M )  e.  NN0 ) )
110109impcom 437 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N
)  /\  ( 0  <_  M  /\  N  <_  L ) )  /\  x  e.  ( 0..^ ( N  -  M
) ) )  -> 
( x  +  M
)  e.  NN0 )
11192adantl 473 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  e.  V  /\  L  e.  NN0 )  ->  L  e.  ZZ )
1121113ad2ant1 1051 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  L  e.  ZZ )
113112adantr 472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  L  e.  ZZ )
114 nn0re 10902 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( L  e.  NN0  ->  L  e.  RR )
115114adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( S  e.  V  /\  L  e.  NN0 )  ->  L  e.  RR )
116115, 58anim12ci 577 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  (
( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR ) )
117 df-3an 1009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  L  e.  RR )  <->  ( ( M  e.  RR  /\  N  e.  RR )  /\  L  e.  RR ) )
118116, 117sylibr 217 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( M  e.  RR  /\  N  e.  RR  /\  L  e.  RR ) )
119 ltletr 9743 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  RR  /\  N  e.  RR  /\  L  e.  RR )  ->  (
( M  <  N  /\  N  <_  L )  ->  M  <  L
) )
120118, 119syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  (
( M  <  N  /\  N  <_  L )  ->  M  <  L
) )
121 elnn0z 10974 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( M  e.  NN0  <->  ( M  e.  ZZ  /\  0  <_  M ) )
122 0red 9662 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  ( S  e.  V  /\  L  e.  NN0 ) )  ->  0  e.  RR )
123 zre 10965 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( M  e.  ZZ  ->  M  e.  RR )
124123adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  ( S  e.  V  /\  L  e.  NN0 ) )  ->  M  e.  RR )
125115adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( M  e.  ZZ  /\  ( S  e.  V  /\  L  e.  NN0 ) )  ->  L  e.  RR )
126 lelttr 9742 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( 0  e.  RR  /\  M  e.  RR  /\  L  e.  RR )  ->  (
( 0  <_  M  /\  M  <  L )  ->  0  <  L
) )
127122, 124, 125, 126syl3anc 1292 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( M  e.  ZZ  /\  ( S  e.  V  /\  L  e.  NN0 ) )  ->  (
( 0  <_  M  /\  M  <  L )  ->  0  <  L
) )
128127expd 443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( M  e.  ZZ  /\  ( S  e.  V  /\  L  e.  NN0 ) )  ->  (
0  <_  M  ->  ( M  <  L  -> 
0  <  L )
) )
129128impancom 447 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( M  e.  ZZ  /\  0  <_  M )  -> 
( ( S  e.  V  /\  L  e. 
NN0 )  ->  ( M  <  L  ->  0  <  L ) ) )
130121, 129sylbi 200 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( M  e.  NN0  ->  ( ( S  e.  V  /\  L  e.  NN0 )  -> 
( M  <  L  ->  0  <  L ) ) )
131130adantr 472 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( S  e.  V  /\  L  e. 
NN0 )  ->  ( M  <  L  ->  0  <  L ) ) )
132131impcom 437 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( M  <  L  ->  0  <  L ) )
133120, 132syld 44 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  (
( M  <  N  /\  N  <_  L )  ->  0  <  L
) )
134133expcomd 445 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 ) )  ->  ( N  <_  L  ->  ( M  <  N  ->  0  <  L ) ) )
1351343impia 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( M  <  N  ->  0  <  L ) )
136135imp 436 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  0  <  L )
137 elnnz 10971 . . . . . . . . . . . . . . . 16  |-  ( L  e.  NN  <->  ( L  e.  ZZ  /\  0  < 
L ) )
138113, 136, 137sylanbrc 677 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  L  e.  NN )
139138ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N
)  /\  ( 0  <_  M  /\  N  <_  L ) )  /\  x  e.  ( 0..^ ( N  -  M
) ) )  ->  L  e.  NN )
140 elfzo0 11984 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0..^ ( N  -  M ) )  <->  ( x  e. 
NN0  /\  ( N  -  M )  e.  NN  /\  x  <  ( N  -  M ) ) )
141 nn0readdcl 10955 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( x  e.  NN0  /\  M  e.  NN0 )  -> 
( x  +  M
)  e.  RR )
142141expcom 442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( M  e.  NN0  ->  ( x  e.  NN0  ->  ( x  +  M )  e.  RR ) )
143142ad2antrl 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  ( x  e.  NN0  ->  ( x  +  M )  e.  RR ) )
144143impcom 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  (
x  +  M )  e.  RR )
14526adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  N  e.  RR )
146145adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  N  e.  RR )
147146adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  N  e.  RR )
148114ad2antrl 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  L  e.  RR )
149144, 147, 1483jca 1210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  (
( x  +  M
)  e.  RR  /\  N  e.  RR  /\  L  e.  RR ) )
150149ex 441 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  e.  NN0  ->  ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  ( (
x  +  M )  e.  RR  /\  N  e.  RR  /\  L  e.  RR ) ) )
151150adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  NN0  /\  x  <  ( N  -  M ) )  -> 
( ( L  e. 
NN0  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( x  +  M )  e.  RR  /\  N  e.  RR  /\  L  e.  RR )
) )
152151impcom 437 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  /\  ( x  e.  NN0  /\  x  < 
( N  -  M
) ) )  -> 
( ( x  +  M )  e.  RR  /\  N  e.  RR  /\  L  e.  RR )
)
153152adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( L  e. 
NN0  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  /\  ( x  e.  NN0  /\  x  <  ( N  -  M ) ) )  /\  N  <_  L )  ->  (
( x  +  M
)  e.  RR  /\  N  e.  RR  /\  L  e.  RR ) )
154 nn0re 10902 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  e.  NN0  ->  x  e.  RR )
155154adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  x  e.  RR )
15625ad2antrl 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  M  e.  RR )
157156adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  M  e.  RR )
158155, 157, 147ltaddsubd 10234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  (
( x  +  M
)  <  N  <->  x  <  ( N  -  M ) ) )
159 idd 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  /\  N  <_  L )  ->  (
( x  +  M
)  <  N  ->  ( x  +  M )  <  N ) )
160159ex 441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  ( N  <_  L  ->  (
( x  +  M
)  <  N  ->  ( x  +  M )  <  N ) ) )
161160com23 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  (
( x  +  M
)  <  N  ->  ( N  <_  L  ->  ( x  +  M )  <  N ) ) )
162158, 161sylbird 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  e.  NN0  /\  ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
) )  ->  (
x  <  ( N  -  M )  ->  ( N  <_  L  ->  (
x  +  M )  <  N ) ) )
163162impancom 447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( x  e.  NN0  /\  x  <  ( N  -  M ) )  -> 
( ( L  e. 
NN0  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( N  <_  L  ->  ( x  +  M
)  <  N )
) )
164163impcom 437 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  /\  ( x  e.  NN0  /\  x  < 
( N  -  M
) ) )  -> 
( N  <_  L  ->  ( x  +  M
)  <  N )
)
165164impac 633 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( L  e. 
NN0  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  /\  ( x  e.  NN0  /\  x  <  ( N  -  M ) ) )  /\  N  <_  L )  ->  (
( x  +  M
)  <  N  /\  N  <_  L ) )
166 ltletr 9743 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  +  M
)  e.  RR  /\  N  e.  RR  /\  L  e.  RR )  ->  (
( ( x  +  M )  <  N  /\  N  <_  L )  ->  ( x  +  M )  <  L
) )
167153, 165, 166sylc 61 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( L  e. 
NN0  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  /\  ( x  e.  NN0  /\  x  <  ( N  -  M ) ) )  /\  N  <_  L )  ->  (
x  +  M )  <  L )
168167exp31 615 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  ( (
x  e.  NN0  /\  x  <  ( N  -  M ) )  -> 
( N  <_  L  ->  ( x  +  M
)  <  L )
) )
169168com23 80 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( L  e.  NN0  /\  ( M  e.  NN0  /\  N  e.  NN0 )
)  ->  ( N  <_  L  ->  ( (
x  e.  NN0  /\  x  <  ( N  -  M ) )  -> 
( x  +  M
)  <  L )
) )
170169ex 441 . . . . . . . . . . . . . . . . . . . . 21  |-  ( L  e.  NN0  ->  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <_  L  ->  ( ( x  e. 
NN0  /\  x  <  ( N  -  M ) )  ->  ( x  +  M )  <  L
) ) ) )
171170adantl 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  e.  V  /\  L  e.  NN0 )  -> 
( ( M  e. 
NN0  /\  N  e.  NN0 )  ->  ( N  <_  L  ->  ( (
x  e.  NN0  /\  x  <  ( N  -  M ) )  -> 
( x  +  M
)  <  L )
) ) )
1721713imp 1224 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
( x  e.  NN0  /\  x  <  ( N  -  M ) )  ->  ( x  +  M )  <  L
) )
173172ad2antrr 740 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( ( x  e.  NN0  /\  x  <  ( N  -  M
) )  ->  (
x  +  M )  <  L ) )
174173com12 31 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  NN0  /\  x  <  ( N  -  M ) )  -> 
( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  +  M )  <  L
) )
1751743adant2 1049 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  NN0  /\  ( N  -  M
)  e.  NN  /\  x  <  ( N  -  M ) )  -> 
( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  +  M )  <  L
) )
176140, 175sylbi 200 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0..^ ( N  -  M ) )  ->  ( (
( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  +  M )  <  L
) )
177176impcom 437 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N
)  /\  ( 0  <_  M  /\  N  <_  L ) )  /\  x  e.  ( 0..^ ( N  -  M
) ) )  -> 
( x  +  M
)  <  L )
178 elfzo0 11984 . . . . . . . . . . . . . 14  |-  ( ( x  +  M )  e.  ( 0..^ L )  <->  ( ( x  +  M )  e. 
NN0  /\  L  e.  NN  /\  ( x  +  M )  <  L
) )
179110, 139, 177, 178syl3anbrc 1214 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N
)  /\  ( 0  <_  M  /\  N  <_  L ) )  /\  x  e.  ( 0..^ ( N  -  M
) ) )  -> 
( x  +  M
)  e.  ( 0..^ L ) )
180 repswsymb 12931 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  L  e.  NN0  /\  (
x  +  M )  e.  ( 0..^ L ) )  ->  (
( S repeatS  L ) `  ( x  +  M
) )  =  S )
181100, 102, 179, 180syl3anc 1292 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N
)  /\  ( 0  <_  M  /\  N  <_  L ) )  /\  x  e.  ( 0..^ ( N  -  M
) ) )  -> 
( ( S repeatS  L
) `  ( x  +  M ) )  =  S )
182181mpteq2dva 4482 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) )  =  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  S ) )
183343ad2ant2 1052 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( N  -  M )  e.  ZZ )
184183adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( N  -  M )  e.  ZZ )
185583ad2ant2 1052 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( M  e.  RR  /\  N  e.  RR ) )
186 ltle 9740 . . . . . . . . . . . . . . . . . 18  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <  N  ->  M  <_  N )
)
187185, 186syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( M  <  N  ->  M  <_  N ) )
188273ad2ant2 1052 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( N  e.  RR  /\  M  e.  RR ) )
189188, 56syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
0  <_  ( N  -  M )  <->  M  <_  N ) )
190187, 189sylibrd 242 . . . . . . . . . . . . . . . 16  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( M  <  N  ->  0  <_  ( N  -  M
) ) )
191190imp 436 . . . . . . . . . . . . . . 15  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  0  <_  ( N  -  M
) )
192184, 191, 55sylanbrc 677 . . . . . . . . . . . . . 14  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( N  -  M )  e.  NN0 )
19399, 192jca 541 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( S  e.  V  /\  ( N  -  M
)  e.  NN0 )
)
194193adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( S  e.  V  /\  ( N  -  M )  e. 
NN0 ) )
195 reps 12927 . . . . . . . . . . . . 13  |-  ( ( S  e.  V  /\  ( N  -  M
)  e.  NN0 )  ->  ( S repeatS  ( N  -  M ) )  =  ( x  e.  ( 0..^ ( N  -  M ) )  |->  S ) )
196195eqcomd 2477 . . . . . . . . . . . 12  |-  ( ( S  e.  V  /\  ( N  -  M
)  e.  NN0 )  ->  ( x  e.  ( 0..^ ( N  -  M ) )  |->  S )  =  ( S repeatS 
( N  -  M
) ) )
197194, 196syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  S )  =  ( S repeatS  ( N  -  M ) ) )
198182, 197eqtrd 2505 . . . . . . . . . 10  |-  ( ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  /\  (
0  <_  M  /\  N  <_  L ) )  ->  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) )  =  ( S repeatS  ( N  -  M )
) )
199198ex 441 . . . . . . . . 9  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  (
( 0  <_  M  /\  N  <_  L )  ->  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) )  =  ( S repeatS  ( N  -  M )
) ) )
20098, 199sylbid 223 . . . . . . . 8  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  (
( M..^ N ) 
C_  ( 0..^ L )  ->  ( x  e.  ( 0..^ ( N  -  M ) ) 
|->  ( ( S repeatS  L
) `  ( x  +  M ) ) )  =  ( S repeatS  ( N  -  M )
) ) )
201200impcom 437 . . . . . . 7  |-  ( ( ( M..^ N ) 
C_  ( 0..^ L )  /\  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N ) )  -> 
( x  e.  ( 0..^ ( N  -  M ) )  |->  ( ( S repeatS  L ) `  ( x  +  M
) ) )  =  ( S repeatS  ( N  -  M ) ) )
20288, 201eqtrd 2505 . . . . . 6  |-  ( ( ( M..^ N ) 
C_  ( 0..^ L )  /\  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N ) )  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) )
203 iffalse 3881 . . . . . . . 8  |-  ( -.  ( M..^ N ) 
C_  ( 0..^ L )  ->  if (
( M..^ N ) 
C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M ) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  (/) )
204203adantr 472 . . . . . . 7  |-  ( ( -.  ( M..^ N
)  C_  ( 0..^ L )  /\  (
( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N ) )  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  (/) )
20598notbid 301 . . . . . . . . 9  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( -.  ( M..^ N ) 
C_  ( 0..^ L )  <->  -.  ( 0  <_  M  /\  N  <_  L ) ) )
206 ianor 496 . . . . . . . . . . 11  |-  ( -.  ( 0  <_  M  /\  N  <_  L )  <-> 
( -.  0  <_  M  \/  -.  N  <_  L ) )
207 nn0ge0 10919 . . . . . . . . . . . . . . . . 17  |-  ( M  e.  NN0  ->  0  <_  M )
208 pm2.24 112 . . . . . . . . . . . . . . . . 17  |-  ( 0  <_  M  ->  ( -.  0  <_  M  -> 
( S repeatS  ( N  -  M ) )  =  (/) ) )
209207, 208syl 17 . . . . . . . . . . . . . . . 16  |-  ( M  e.  NN0  ->  ( -.  0  <_  M  ->  ( S repeatS  ( N  -  M ) )  =  (/) ) )
210209adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  -> 
( -.  0  <_  M  ->  ( S repeatS  ( N  -  M )
)  =  (/) ) )
2112103ad2ant2 1052 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( -.  0  <_  M  -> 
( S repeatS  ( N  -  M ) )  =  (/) ) )
212211adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( -.  0  <_  M  -> 
( S repeatS  ( N  -  M ) )  =  (/) ) )
213212com12 31 . . . . . . . . . . . 12  |-  ( -.  0  <_  M  ->  ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( S repeatS  ( N  -  M
) )  =  (/) ) )
214 pm2.24 112 . . . . . . . . . . . . . . 15  |-  ( N  <_  L  ->  ( -.  N  <_  L  -> 
( S repeatS  ( N  -  M ) )  =  (/) ) )
2152143ad2ant3 1053 . . . . . . . . . . . . . 14  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( -.  N  <_  L  -> 
( S repeatS  ( N  -  M ) )  =  (/) ) )
216215adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( -.  N  <_  L  -> 
( S repeatS  ( N  -  M ) )  =  (/) ) )
217216com12 31 . . . . . . . . . . . 12  |-  ( -.  N  <_  L  ->  ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( S repeatS  ( N  -  M
) )  =  (/) ) )
218213, 217jaoi 386 . . . . . . . . . . 11  |-  ( ( -.  0  <_  M  \/  -.  N  <_  L
)  ->  ( (
( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( S repeatS  ( N  -  M
) )  =  (/) ) )
219206, 218sylbi 200 . . . . . . . . . 10  |-  ( -.  ( 0  <_  M  /\  N  <_  L )  ->  ( ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( S repeatS  ( N  -  M
) )  =  (/) ) )
220219com12 31 . . . . . . . . 9  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( -.  ( 0  <_  M  /\  N  <_  L )  ->  ( S repeatS  ( N  -  M )
)  =  (/) ) )
221205, 220sylbid 223 . . . . . . . 8  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  ( -.  ( M..^ N ) 
C_  ( 0..^ L )  ->  ( S repeatS  ( N  -  M ) )  =  (/) ) )
222221impcom 437 . . . . . . 7  |-  ( ( -.  ( M..^ N
)  C_  ( 0..^ L )  /\  (
( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N ) )  -> 
( S repeatS  ( N  -  M ) )  =  (/) )
223204, 222eqtr4d 2508 . . . . . 6  |-  ( ( -.  ( M..^ N
)  C_  ( 0..^ L )  /\  (
( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N ) )  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) )
224202, 223pm2.61ian 807 . . . . 5  |-  ( ( ( ( S  e.  V  /\  L  e. 
NN0 )  /\  ( M  e.  NN0  /\  N  e.  NN0 )  /\  N  <_  L )  /\  M  <  N )  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) )
225224ex 441 . . . 4  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( M  <  N  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) ) )
22687, 225sylbid 223 . . 3  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  ( -.  N  <_  M  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) ) )
22783, 226pm2.61d 163 . 2  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  if ( ( M..^ N
)  C_  ( 0..^ L ) ,  ( x  e.  ( 0..^ ( N  -  M
) )  |->  ( ( S repeatS  L ) `  (
x  +  M ) ) ) ,  (/) )  =  ( S repeatS  ( N  -  M ) ) )
22810, 16, 2273eqtrd 2509 1  |-  ( ( ( S  e.  V  /\  L  e.  NN0 )  /\  ( M  e. 
NN0  /\  N  e.  NN0 )  /\  N  <_  L )  ->  (
( S repeatS  L ) substr  <. M ,  N >. )  =  ( S repeatS  ( N  -  M )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    e/ wnel 2642    C_ wss 3390   (/)c0 3722   ifcif 3872   <.cop 3965   class class class wbr 4395    |-> cmpt 4454   dom cdm 4839   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557    + caddc 9560    < clt 9693    <_ cle 9694    - cmin 9880   NNcn 10631   NN0cn0 10893   ZZcz 10961  ..^cfzo 11942  Word cword 12703   substr csubstr 12707   repeatS creps 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-fzo 11943  df-hash 12554  df-word 12711  df-substr 12715  df-reps 12718
This theorem is referenced by:  repswcshw  12968
  Copyright terms: Public domain W3C validator