MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsundef Structured version   Unicode version

Theorem repsundef 12497
Description: A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.)
Assertion
Ref Expression
repsundef  |-  ( N  e/  NN0  ->  ( S repeatS  N )  =  (/) )

Proof of Theorem repsundef
Dummy variables  n  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-reps 12324 . . 3  |- repeatS  =  ( s  e.  _V ,  n  e.  NN0  |->  ( x  e.  ( 0..^ n )  |->  s ) )
2 ovex 6201 . . . 4  |-  ( 0..^ n )  e.  _V
32mptex 6033 . . 3  |-  ( x  e.  ( 0..^ n )  |->  s )  e. 
_V
41, 3dmmpt2 6730 . 2  |-  dom repeatS  =  ( _V  X.  NN0 )
5 df-nel 2644 . . . 4  |-  ( N  e/  NN0  <->  -.  N  e.  NN0 )
65biimpi 194 . . 3  |-  ( N  e/  NN0  ->  -.  N  e.  NN0 )
76intnand 907 . 2  |-  ( N  e/  NN0  ->  -.  ( S  e.  _V  /\  N  e.  NN0 ) )
8 ndmovg 6332 . 2  |-  ( ( dom repeatS  =  ( _V  X.  NN0 )  /\  -.  ( S  e.  _V  /\  N  e.  NN0 )
)  ->  ( S repeatS  N )  =  (/) )
94, 7, 8sylancr 663 1  |-  ( N  e/  NN0  ->  ( S repeatS  N )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1757    e/ wnel 2642   _Vcvv 3054   (/)c0 3721    |-> cmpt 4434    X. cxp 4922   dom cdm 4924  (class class class)co 6176   0cc0 9369   NN0cn0 10666  ..^cfzo 11635   repeatS creps 12316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-nel 2644  df-ral 2797  df-rex 2798  df-reu 2799  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-nul 3722  df-if 3876  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4176  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-id 4720  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-1st 6663  df-2nd 6664  df-reps 12324
This theorem is referenced by:  repswswrd  12510
  Copyright terms: Public domain W3C validator