MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsconst Structured version   Unicode version

Theorem repsconst 12410
Description: Construct a function mapping a half-open range of nonnegative integers to a constant, see also fconstmpt 4882. (Contributed by AV, 4-Nov-2018.)
Assertion
Ref Expression
repsconst  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( S repeatS  N )  =  ( ( 0..^ N )  X.  { S } ) )

Proof of Theorem repsconst
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reps 12408 . 2  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( S repeatS  N )  =  ( x  e.  ( 0..^ N ) 
|->  S ) )
2 fconstmpt 4882 . 2  |-  ( ( 0..^ N )  X. 
{ S } )  =  ( x  e.  ( 0..^ N ) 
|->  S )
31, 2syl6eqr 2493 1  |-  ( ( S  e.  V  /\  N  e.  NN0 )  -> 
( S repeatS  N )  =  ( ( 0..^ N )  X.  { S } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {csn 3877    e. cmpt 4350    X. cxp 4838  (class class class)co 6091   0cc0 9282   NN0cn0 10579  ..^cfzo 11548   repeatS creps 12228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-reps 12236
This theorem is referenced by:  repsdf2  12416  repsw1  12421
  Copyright terms: Public domain W3C validator