MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  replimd Structured version   Unicode version

Theorem replimd 13228
Description: Construct a complex number from its real and imaginary parts. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
recld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
replimd  |-  ( ph  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )

Proof of Theorem replimd
StepHypRef Expression
1 recld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 replim 13147 . 2  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
31, 2syl 17 1  |-  ( ph  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437    e. wcel 1867   ` cfv 5592  (class class class)co 6296   CCcc 9526   _ici 9530    + caddc 9531    x. cmul 9533   Recre 13128   Imcim 13129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-po 4766  df-so 4767  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-er 7362  df-en 7569  df-dom 7570  df-sdom 7571  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-2 10657  df-cj 13130  df-re 13131  df-im 13132
This theorem is referenced by:  caucvgr  13708  iblabs  22660  itgmulc2  22665  efif1olem4  23356  eff1olem  23359  lognegb  23401  efiarg  23418  abslogle  23429  logcn  23454  bhmafibid1  28240  iblabsnc  31710  iblmulc2nc  31711  itgmulc2nc  31714  ftc1anclem6  31726  ftc1anclem8  31728  cntotbnd  31832
  Copyright terms: Public domain W3C validator