MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphti Structured version   Unicode version

Theorem reparphti 21663
Description: Lemma for reparpht 21664. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
reparpht.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
reparpht.3  |-  ( ph  ->  G  e.  ( II 
Cn  II ) )
reparpht.4  |-  ( ph  ->  ( G `  0
)  =  0 )
reparpht.5  |-  ( ph  ->  ( G `  1
)  =  1 )
reparphti.6  |-  H  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )
Assertion
Ref Expression
reparphti  |-  ( ph  ->  H  e.  ( ( F  o.  G ) ( PHtpy `  J ) F ) )
Distinct variable groups:    x, y, F    x, G, y    x, J, y    ph, x, y
Allowed substitution hints:    H( x, y)

Proof of Theorem reparphti
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.3 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  II ) )
2 reparpht.2 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
3 cnco 19934 . . 3  |-  ( ( G  e.  ( II 
Cn  II )  /\  F  e.  ( II  Cn  J ) )  -> 
( F  o.  G
)  e.  ( II 
Cn  J ) )
41, 2, 3syl2anc 659 . 2  |-  ( ph  ->  ( F  o.  G
)  e.  ( II 
Cn  J ) )
5 reparphti.6 . . 3  |-  H  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )
6 iitopon 21549 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
76a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
8 eqid 2454 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
98cnfldtop 21457 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  Top
10 cnrest2r 19955 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) )  C_  (
( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
119, 10mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) 
C_  ( ( II 
tX  II )  Cn  ( TopOpen ` fld ) ) )
127, 7cnmpt2nd 20336 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  II ) )
13 iirevcn 21596 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] 1 )  |->  ( 1  -  z ) )  e.  ( II  Cn  II )
1413a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( z  e.  ( 0 [,] 1 ) 
|->  ( 1  -  z
) )  e.  ( II  Cn  II ) )
15 oveq2 6278 . . . . . . . . . . 11  |-  ( z  =  y  ->  (
1  -  z )  =  ( 1  -  y ) )
167, 7, 12, 7, 14, 15cnmpt21 20338 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  II ) )
178dfii3 21553 . . . . . . . . . . 11  |-  II  =  ( ( TopOpen ` fld )t  ( 0 [,] 1 ) )
1817oveq2i 6281 . . . . . . . . . 10  |-  ( ( II  tX  II )  Cn  II )  =  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) )
1916, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2011, 19sseldd 3490 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
217, 7cnmpt1st 20335 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  II ) )
227, 7, 21, 1cnmpt21f 20339 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  II ) )
2322, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2411, 23sseldd 3490 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
258mulcn 21537 . . . . . . . . 9  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
2625a1i 11 . . . . . . . 8  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
277, 7, 20, 24, 26cnmpt22f 20342 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( 1  -  y )  x.  ( G `  x )
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
2812, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2911, 28sseldd 3490 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
3021, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
3111, 30sseldd 3490 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
327, 7, 29, 31, 26cnmpt22f 20342 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( y  x.  x
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
338addcn 21535 . . . . . . . 8  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3433a1i 11 . . . . . . 7  |-  ( ph  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
357, 7, 27, 32, 34cnmpt22f 20342 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
368cnfldtopon 21456 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3736a1i 11 . . . . . . 7  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
38 iiuni 21551 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  = 
U. II
3938, 38cnf 19914 . . . . . . . . . . . . . 14  |-  ( G  e.  ( II  Cn  II )  ->  G :
( 0 [,] 1
) --> ( 0 [,] 1 ) )
401, 39syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) )
4140ffvelrnda 6007 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  ( G `  x )  e.  ( 0 [,] 1
) )
4241adantrr 714 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( G `  x
)  e.  ( 0 [,] 1 ) )
43 simprl 754 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  ->  x  e.  ( 0 [,] 1 ) )
44 simprr 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
y  e.  ( 0 [,] 1 ) )
45 0re 9585 . . . . . . . . . . . 12  |-  0  e.  RR
46 1re 9584 . . . . . . . . . . . 12  |-  1  e.  RR
47 icccvx 21616 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( ( ( G `
 x )  e.  ( 0 [,] 1
)  /\  x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) ) )
4845, 46, 47mp2an 670 . . . . . . . . . . 11  |-  ( ( ( G `  x
)  e.  ( 0 [,] 1 )  /\  x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  e.  ( 0 [,] 1 ) )
4942, 43, 44, 48syl3anc 1226 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) )
5049ralrimivva 2875 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) )
51 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y
)  x.  ( G `
 x ) )  +  ( y  x.  x ) ) )  =  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )
5251fmpt2 6840 . . . . . . . . 9  |-  ( A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) )  e.  ( 0 [,] 1 )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) ) : ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) --> ( 0 [,] 1 ) )
5350, 52sylib 196 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) ) : ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) --> ( 0 [,] 1
) )
54 frn 5719 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> ( 0 [,] 1 )  ->  ran  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  C_  ( 0 [,] 1
) )
5553, 54syl 16 . . . . . . 7  |-  ( ph  ->  ran  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  C_  ( 0 [,] 1
) )
56 unitssre 11670 . . . . . . . . 9  |-  ( 0 [,] 1 )  C_  RR
57 ax-resscn 9538 . . . . . . . . 9  |-  RR  C_  CC
5856, 57sstri 3498 . . . . . . . 8  |-  ( 0 [,] 1 )  C_  CC
5958a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0 [,] 1
)  C_  CC )
60 cnrest2 19954 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( x  e.  (
0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  C_  (
0 [,] 1 )  /\  ( 0 [,] 1 )  C_  CC )  ->  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y
)  x.  ( G `
 x ) )  +  ( y  x.  x ) ) )  e.  ( ( II 
tX  II )  Cn  ( TopOpen ` fld ) )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) ) )
6137, 55, 59, 60syl3anc 1226 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  ( TopOpen
` fld
) )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) ) )
6235, 61mpbid 210 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
6362, 18syl6eleqr 2553 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
647, 7, 63, 2cnmpt21f 20339 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )  e.  ( ( II  tX  II )  Cn  J ) )
655, 64syl5eqel 2546 . 2  |-  ( ph  ->  H  e.  ( ( II  tX  II )  Cn  J ) )
6640ffvelrnda 6007 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  s )  e.  ( 0 [,] 1
) )
6758, 66sseldi 3487 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  s )  e.  CC )
6867mulid2d 9603 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  ( G `
 s ) )  =  ( G `  s ) )
6958sseli 3485 . . . . . . . 8  |-  ( s  e.  ( 0 [,] 1 )  ->  s  e.  CC )
7069adantl 464 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  CC )
7170mul02d 9767 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  s )  =  0 )
7268, 71oveq12d 6288 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) )  =  ( ( G `
 s )  +  0 ) )
7367addid1d 9769 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( G `  s
)  +  0 )  =  ( G `  s ) )
7472, 73eqtrd 2495 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) )  =  ( G `  s ) )
7574fveq2d 5852 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) )  =  ( F `  ( G `  s ) ) )
76 simpr 459 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
77 0elunit 11641 . . . 4  |-  0  e.  ( 0 [,] 1
)
78 simpr 459 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
7978oveq2d 6286 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 1  -  y )  =  ( 1  -  0 ) )
80 1m0e1 10642 . . . . . . . . 9  |-  ( 1  -  0 )  =  1
8179, 80syl6eq 2511 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 1  -  y )  =  1 )
82 simpl 455 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
8382fveq2d 5852 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( G `  x )  =  ( G `  s ) )
8481, 83oveq12d 6288 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( 1  x.  ( G `
 s ) ) )
8578, 82oveq12d 6288 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( y  x.  x )  =  ( 0  x.  s ) )
8684, 85oveq12d 6288 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) ) )
8786fveq2d 5852 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( 1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) ) )
88 fvex 5858 . . . . 5  |-  ( F `
 ( ( 1  x.  ( G `  s ) )  +  ( 0  x.  s
) ) )  e. 
_V
8987, 5, 88ovmpt2a 6406 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s H 0 )  =  ( F `  ( ( 1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) ) )
9076, 77, 89sylancl 660 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( F `  ( ( 1  x.  ( G `  s
) )  +  ( 0  x.  s ) ) ) )
91 fvco3 5925 . . . 4  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  s )  =  ( F `  ( G `
 s ) ) )
9240, 91sylan 469 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  s )  =  ( F `  ( G `  s ) ) )
9375, 90, 923eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( ( F  o.  G ) `  s ) )
94 1elunit 11642 . . . 4  |-  1  e.  ( 0 [,] 1
)
95 simpr 459 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
9695oveq2d 6286 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 1  -  y )  =  ( 1  -  1 ) )
97 1m1e0 10600 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
9896, 97syl6eq 2511 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 1  -  y )  =  0 )
99 simpl 455 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
10099fveq2d 5852 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( G `  x )  =  ( G `  s ) )
10198, 100oveq12d 6288 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( 0  x.  ( G `
 s ) ) )
10295, 99oveq12d 6288 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( y  x.  x )  =  ( 1  x.  s ) )
103101, 102oveq12d 6288 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) ) )
104103fveq2d 5852 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( 0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) ) )
105 fvex 5858 . . . . 5  |-  ( F `
 ( ( 0  x.  ( G `  s ) )  +  ( 1  x.  s
) ) )  e. 
_V
106104, 5, 105ovmpt2a 6406 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s H 1 )  =  ( F `  ( ( 0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) ) )
10776, 94, 106sylancl 660 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( F `  ( ( 0  x.  ( G `  s
) )  +  ( 1  x.  s ) ) ) )
10867mul02d 9767 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  ( G `
 s ) )  =  0 )
10970mulid2d 9603 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  s )  =  s )
110108, 109oveq12d 6288 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) )  =  ( 0  +  s ) )
11170addid2d 9770 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  +  s )  =  s )
112110, 111eqtrd 2495 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) )  =  s )
113112fveq2d 5852 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) )  =  ( F `  s ) )
114107, 113eqtrd 2495 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( F `  s ) )
115 reparpht.4 . . . . . . . . 9  |-  ( ph  ->  ( G `  0
)  =  0 )
116115adantr 463 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  0 )  =  0 )
117116oveq2d 6286 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 0 ) )  =  ( ( 1  -  s )  x.  0 ) )
118 ax-1cn 9539 . . . . . . . . 9  |-  1  e.  CC
119 subcl 9810 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  s
)  e.  CC )
120118, 70, 119sylancr 661 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  -  s )  e.  CC )
121120mul01d 9768 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  0 )  =  0 )
122117, 121eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 0 ) )  =  0 )
12370mul01d 9768 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s  x.  0 )  =  0 )
124122, 123oveq12d 6288 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) )  =  ( 0  +  0 ) )
125 00id 9744 . . . . 5  |-  ( 0  +  0 )  =  0
126124, 125syl6eq 2511 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) )  =  0 )
127126fveq2d 5852 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) )  =  ( F ` 
0 ) )
128 simpr 459 . . . . . . . . 9  |-  ( ( x  =  0  /\  y  =  s )  ->  y  =  s )
129128oveq2d 6286 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 1  -  y )  =  ( 1  -  s ) )
130 simpl 455 . . . . . . . . 9  |-  ( ( x  =  0  /\  y  =  s )  ->  x  =  0 )
131130fveq2d 5852 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( G `  x )  =  ( G `  0 ) )
132129, 131oveq12d 6288 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( ( 1  -  s
)  x.  ( G `
 0 ) ) )
133128, 130oveq12d 6288 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( y  x.  x )  =  ( s  x.  0 ) )
134132, 133oveq12d 6288 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) ) )
135134fveq2d 5852 . . . . 5  |-  ( ( x  =  0  /\  y  =  s )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) ) )
136 fvex 5858 . . . . 5  |-  ( F `
 ( ( ( 1  -  s )  x.  ( G ` 
0 ) )  +  ( s  x.  0 ) ) )  e. 
_V
137135, 5, 136ovmpt2a 6406 . . . 4  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 H s )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) ) )
13877, 76, 137sylancr 661 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F `  ( ( ( 1  -  s )  x.  ( G `  0
) )  +  ( s  x.  0 ) ) ) )
139 fvco3 5925 . . . . . 6  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  0 )  =  ( F `  ( G `  0 )
) )
14040, 77, 139sylancl 660 . . . . 5  |-  ( ph  ->  ( ( F  o.  G ) `  0
)  =  ( F `
 ( G ` 
0 ) ) )
141115fveq2d 5852 . . . . 5  |-  ( ph  ->  ( F `  ( G `  0 )
)  =  ( F `
 0 ) )
142140, 141eqtrd 2495 . . . 4  |-  ( ph  ->  ( ( F  o.  G ) `  0
)  =  ( F `
 0 ) )
143142adantr 463 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  0 )  =  ( F ` 
0 ) )
144127, 138, 1433eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( ( F  o.  G ) ` 
0 ) )
145 reparpht.5 . . . . . . . . 9  |-  ( ph  ->  ( G `  1
)  =  1 )
146145adantr 463 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  1 )  =  1 )
147146oveq2d 6286 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 1 ) )  =  ( ( 1  -  s )  x.  1 ) )
148120mulid1d 9602 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  1 )  =  ( 1  -  s ) )
149147, 148eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 1 ) )  =  ( 1  -  s ) )
15070mulid1d 9602 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s  x.  1 )  =  s )
151149, 150oveq12d 6288 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) )  =  ( ( 1  -  s )  +  s ) )
152 npcan 9820 . . . . . 6  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( ( 1  -  s )  +  s )  =  1 )
153118, 70, 152sylancr 661 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  +  s )  =  1 )
154151, 153eqtrd 2495 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) )  =  1 )
155154fveq2d 5852 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) )  =  ( F ` 
1 ) )
156 simpr 459 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  y  =  s )
157156oveq2d 6286 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 1  -  y )  =  ( 1  -  s ) )
158 simpl 455 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  x  =  1 )
159158fveq2d 5852 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( G `  x )  =  ( G `  1 ) )
160157, 159oveq12d 6288 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( ( 1  -  s
)  x.  ( G `
 1 ) ) )
161156, 158oveq12d 6288 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( y  x.  x )  =  ( s  x.  1 ) )
162160, 161oveq12d 6288 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) ) )
163162fveq2d 5852 . . . . 5  |-  ( ( x  =  1  /\  y  =  s )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) ) )
164 fvex 5858 . . . . 5  |-  ( F `
 ( ( ( 1  -  s )  x.  ( G ` 
1 ) )  +  ( s  x.  1 ) ) )  e. 
_V
165163, 5, 164ovmpt2a 6406 . . . 4  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 H s )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) ) )
16694, 76, 165sylancr 661 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F `  ( ( ( 1  -  s )  x.  ( G `  1
) )  +  ( s  x.  1 ) ) ) )
167 fvco3 5925 . . . . . 6  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  1 )  =  ( F `  ( G `  1 )
) )
16840, 94, 167sylancl 660 . . . . 5  |-  ( ph  ->  ( ( F  o.  G ) `  1
)  =  ( F `
 ( G ` 
1 ) ) )
169145fveq2d 5852 . . . . 5  |-  ( ph  ->  ( F `  ( G `  1 )
)  =  ( F `
 1 ) )
170168, 169eqtrd 2495 . . . 4  |-  ( ph  ->  ( ( F  o.  G ) `  1
)  =  ( F `
 1 ) )
171170adantr 463 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  1 )  =  ( F ` 
1 ) )
172155, 166, 1713eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( ( F  o.  G ) ` 
1 ) )
1734, 2, 65, 93, 114, 144, 172isphtpy2d 21653 1  |-  ( ph  ->  H  e.  ( ( F  o.  G ) ( PHtpy `  J ) F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804    C_ wss 3461    |-> cmpt 4497    X. cxp 4986   ran crn 4989    o. ccom 4992   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    - cmin 9796   [,]cicc 11535   ↾t crest 14910   TopOpenctopn 14911  ℂfldccnfld 18615   Topctop 19561  TopOnctopon 19562    Cn ccn 19892    tX ctx 20227   IIcii 21545   PHtpycphtpy 21634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cn 19895  df-cnp 19896  df-tx 20229  df-hmeo 20422  df-xms 20989  df-ms 20990  df-tms 20991  df-ii 21547  df-htpy 21636  df-phtpy 21637
This theorem is referenced by:  reparpht  21664
  Copyright terms: Public domain W3C validator