MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphti Structured version   Unicode version

Theorem reparphti 20700
Description: Lemma for reparpht 20701. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
reparpht.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
reparpht.3  |-  ( ph  ->  G  e.  ( II 
Cn  II ) )
reparpht.4  |-  ( ph  ->  ( G `  0
)  =  0 )
reparpht.5  |-  ( ph  ->  ( G `  1
)  =  1 )
reparphti.6  |-  H  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )
Assertion
Ref Expression
reparphti  |-  ( ph  ->  H  e.  ( ( F  o.  G ) ( PHtpy `  J ) F ) )
Distinct variable groups:    x, y, F    x, G, y    x, J, y    ph, x, y
Allowed substitution hints:    H( x, y)

Proof of Theorem reparphti
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.3 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  II ) )
2 reparpht.2 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
3 cnco 19001 . . 3  |-  ( ( G  e.  ( II 
Cn  II )  /\  F  e.  ( II  Cn  J ) )  -> 
( F  o.  G
)  e.  ( II 
Cn  J ) )
41, 2, 3syl2anc 661 . 2  |-  ( ph  ->  ( F  o.  G
)  e.  ( II 
Cn  J ) )
5 reparphti.6 . . 3  |-  H  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )
6 iitopon 20586 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
76a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
8 eqid 2454 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
98cnfldtop 20494 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  Top
10 cnrest2r 19022 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) )  C_  (
( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
119, 10mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) 
C_  ( ( II 
tX  II )  Cn  ( TopOpen ` fld ) ) )
127, 7cnmpt2nd 19373 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  II ) )
13 iirevcn 20633 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] 1 )  |->  ( 1  -  z ) )  e.  ( II  Cn  II )
1413a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( z  e.  ( 0 [,] 1 ) 
|->  ( 1  -  z
) )  e.  ( II  Cn  II ) )
15 oveq2 6207 . . . . . . . . . . 11  |-  ( z  =  y  ->  (
1  -  z )  =  ( 1  -  y ) )
167, 7, 12, 7, 14, 15cnmpt21 19375 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  II ) )
178dfii3 20590 . . . . . . . . . . 11  |-  II  =  ( ( TopOpen ` fld )t  ( 0 [,] 1 ) )
1817oveq2i 6210 . . . . . . . . . 10  |-  ( ( II  tX  II )  Cn  II )  =  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) )
1916, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2011, 19sseldd 3464 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
217, 7cnmpt1st 19372 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  II ) )
227, 7, 21, 1cnmpt21f 19376 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  II ) )
2322, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2411, 23sseldd 3464 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
258mulcn 20574 . . . . . . . . 9  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
2625a1i 11 . . . . . . . 8  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
277, 7, 20, 24, 26cnmpt22f 19379 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( 1  -  y )  x.  ( G `  x )
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
2812, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2911, 28sseldd 3464 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
3021, 18syl6eleq 2552 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
3111, 30sseldd 3464 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
327, 7, 29, 31, 26cnmpt22f 19379 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( y  x.  x
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
338addcn 20572 . . . . . . . 8  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3433a1i 11 . . . . . . 7  |-  ( ph  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
357, 7, 27, 32, 34cnmpt22f 19379 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
368cnfldtopon 20493 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3736a1i 11 . . . . . . 7  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
38 iiuni 20588 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  = 
U. II
3938, 38cnf 18981 . . . . . . . . . . . . . 14  |-  ( G  e.  ( II  Cn  II )  ->  G :
( 0 [,] 1
) --> ( 0 [,] 1 ) )
401, 39syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) )
4140ffvelrnda 5951 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  ( G `  x )  e.  ( 0 [,] 1
) )
4241adantrr 716 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( G `  x
)  e.  ( 0 [,] 1 ) )
43 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  ->  x  e.  ( 0 [,] 1 ) )
44 simprr 756 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
y  e.  ( 0 [,] 1 ) )
45 0re 9496 . . . . . . . . . . . 12  |-  0  e.  RR
46 1re 9495 . . . . . . . . . . . 12  |-  1  e.  RR
47 icccvx 20653 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( ( ( G `
 x )  e.  ( 0 [,] 1
)  /\  x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) ) )
4845, 46, 47mp2an 672 . . . . . . . . . . 11  |-  ( ( ( G `  x
)  e.  ( 0 [,] 1 )  /\  x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  e.  ( 0 [,] 1 ) )
4942, 43, 44, 48syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) )
5049ralrimivva 2912 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) )
51 eqid 2454 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y
)  x.  ( G `
 x ) )  +  ( y  x.  x ) ) )  =  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )
5251fmpt2 6750 . . . . . . . . 9  |-  ( A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) )  e.  ( 0 [,] 1 )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) ) : ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) --> ( 0 [,] 1 ) )
5350, 52sylib 196 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) ) : ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) --> ( 0 [,] 1
) )
54 frn 5672 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> ( 0 [,] 1 )  ->  ran  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  C_  ( 0 [,] 1
) )
5553, 54syl 16 . . . . . . 7  |-  ( ph  ->  ran  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  C_  ( 0 [,] 1
) )
56 unitssre 11548 . . . . . . . . 9  |-  ( 0 [,] 1 )  C_  RR
57 ax-resscn 9449 . . . . . . . . 9  |-  RR  C_  CC
5856, 57sstri 3472 . . . . . . . 8  |-  ( 0 [,] 1 )  C_  CC
5958a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0 [,] 1
)  C_  CC )
60 cnrest2 19021 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( x  e.  (
0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  C_  (
0 [,] 1 )  /\  ( 0 [,] 1 )  C_  CC )  ->  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y
)  x.  ( G `
 x ) )  +  ( y  x.  x ) ) )  e.  ( ( II 
tX  II )  Cn  ( TopOpen ` fld ) )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) ) )
6137, 55, 59, 60syl3anc 1219 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  ( TopOpen
` fld
) )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) ) )
6235, 61mpbid 210 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
6362, 18syl6eleqr 2553 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
647, 7, 63, 2cnmpt21f 19376 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )  e.  ( ( II  tX  II )  Cn  J ) )
655, 64syl5eqel 2546 . 2  |-  ( ph  ->  H  e.  ( ( II  tX  II )  Cn  J ) )
6640ffvelrnda 5951 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  s )  e.  ( 0 [,] 1
) )
6758, 66sseldi 3461 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  s )  e.  CC )
6867mulid2d 9514 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  ( G `
 s ) )  =  ( G `  s ) )
6958sseli 3459 . . . . . . . 8  |-  ( s  e.  ( 0 [,] 1 )  ->  s  e.  CC )
7069adantl 466 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  CC )
7170mul02d 9677 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  s )  =  0 )
7268, 71oveq12d 6217 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) )  =  ( ( G `
 s )  +  0 ) )
7367addid1d 9679 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( G `  s
)  +  0 )  =  ( G `  s ) )
7472, 73eqtrd 2495 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) )  =  ( G `  s ) )
7574fveq2d 5802 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) )  =  ( F `  ( G `  s ) ) )
76 simpr 461 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
77 0elunit 11519 . . . 4  |-  0  e.  ( 0 [,] 1
)
78 simpr 461 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
7978oveq2d 6215 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 1  -  y )  =  ( 1  -  0 ) )
80 1m0e1 10542 . . . . . . . . 9  |-  ( 1  -  0 )  =  1
8179, 80syl6eq 2511 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 1  -  y )  =  1 )
82 simpl 457 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
8382fveq2d 5802 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( G `  x )  =  ( G `  s ) )
8481, 83oveq12d 6217 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( 1  x.  ( G `
 s ) ) )
8578, 82oveq12d 6217 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( y  x.  x )  =  ( 0  x.  s ) )
8684, 85oveq12d 6217 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) ) )
8786fveq2d 5802 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( 1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) ) )
88 fvex 5808 . . . . 5  |-  ( F `
 ( ( 1  x.  ( G `  s ) )  +  ( 0  x.  s
) ) )  e. 
_V
8987, 5, 88ovmpt2a 6330 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s H 0 )  =  ( F `  ( ( 1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) ) )
9076, 77, 89sylancl 662 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( F `  ( ( 1  x.  ( G `  s
) )  +  ( 0  x.  s ) ) ) )
91 fvco3 5876 . . . 4  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  s )  =  ( F `  ( G `
 s ) ) )
9240, 91sylan 471 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  s )  =  ( F `  ( G `  s ) ) )
9375, 90, 923eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( ( F  o.  G ) `  s ) )
94 1elunit 11520 . . . 4  |-  1  e.  ( 0 [,] 1
)
95 simpr 461 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
9695oveq2d 6215 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 1  -  y )  =  ( 1  -  1 ) )
97 1m1e0 10500 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
9896, 97syl6eq 2511 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 1  -  y )  =  0 )
99 simpl 457 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
10099fveq2d 5802 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( G `  x )  =  ( G `  s ) )
10198, 100oveq12d 6217 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( 0  x.  ( G `
 s ) ) )
10295, 99oveq12d 6217 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( y  x.  x )  =  ( 1  x.  s ) )
103101, 102oveq12d 6217 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) ) )
104103fveq2d 5802 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( 0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) ) )
105 fvex 5808 . . . . 5  |-  ( F `
 ( ( 0  x.  ( G `  s ) )  +  ( 1  x.  s
) ) )  e. 
_V
106104, 5, 105ovmpt2a 6330 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s H 1 )  =  ( F `  ( ( 0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) ) )
10776, 94, 106sylancl 662 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( F `  ( ( 0  x.  ( G `  s
) )  +  ( 1  x.  s ) ) ) )
10867mul02d 9677 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  ( G `
 s ) )  =  0 )
10970mulid2d 9514 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  s )  =  s )
110108, 109oveq12d 6217 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) )  =  ( 0  +  s ) )
11170addid2d 9680 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  +  s )  =  s )
112110, 111eqtrd 2495 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) )  =  s )
113112fveq2d 5802 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) )  =  ( F `  s ) )
114107, 113eqtrd 2495 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( F `  s ) )
115 reparpht.4 . . . . . . . . 9  |-  ( ph  ->  ( G `  0
)  =  0 )
116115adantr 465 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  0 )  =  0 )
117116oveq2d 6215 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 0 ) )  =  ( ( 1  -  s )  x.  0 ) )
118 ax-1cn 9450 . . . . . . . . 9  |-  1  e.  CC
119 subcl 9719 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  s
)  e.  CC )
120118, 70, 119sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  -  s )  e.  CC )
121120mul01d 9678 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  0 )  =  0 )
122117, 121eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 0 ) )  =  0 )
12370mul01d 9678 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s  x.  0 )  =  0 )
124122, 123oveq12d 6217 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) )  =  ( 0  +  0 ) )
125 00id 9654 . . . . 5  |-  ( 0  +  0 )  =  0
126124, 125syl6eq 2511 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) )  =  0 )
127126fveq2d 5802 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) )  =  ( F ` 
0 ) )
128 simpr 461 . . . . . . . . 9  |-  ( ( x  =  0  /\  y  =  s )  ->  y  =  s )
129128oveq2d 6215 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 1  -  y )  =  ( 1  -  s ) )
130 simpl 457 . . . . . . . . 9  |-  ( ( x  =  0  /\  y  =  s )  ->  x  =  0 )
131130fveq2d 5802 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( G `  x )  =  ( G `  0 ) )
132129, 131oveq12d 6217 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( ( 1  -  s
)  x.  ( G `
 0 ) ) )
133128, 130oveq12d 6217 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( y  x.  x )  =  ( s  x.  0 ) )
134132, 133oveq12d 6217 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) ) )
135134fveq2d 5802 . . . . 5  |-  ( ( x  =  0  /\  y  =  s )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) ) )
136 fvex 5808 . . . . 5  |-  ( F `
 ( ( ( 1  -  s )  x.  ( G ` 
0 ) )  +  ( s  x.  0 ) ) )  e. 
_V
137135, 5, 136ovmpt2a 6330 . . . 4  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 H s )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) ) )
13877, 76, 137sylancr 663 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F `  ( ( ( 1  -  s )  x.  ( G `  0
) )  +  ( s  x.  0 ) ) ) )
139 fvco3 5876 . . . . . 6  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  0 )  =  ( F `  ( G `  0 )
) )
14040, 77, 139sylancl 662 . . . . 5  |-  ( ph  ->  ( ( F  o.  G ) `  0
)  =  ( F `
 ( G ` 
0 ) ) )
141115fveq2d 5802 . . . . 5  |-  ( ph  ->  ( F `  ( G `  0 )
)  =  ( F `
 0 ) )
142140, 141eqtrd 2495 . . . 4  |-  ( ph  ->  ( ( F  o.  G ) `  0
)  =  ( F `
 0 ) )
143142adantr 465 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  0 )  =  ( F ` 
0 ) )
144127, 138, 1433eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( ( F  o.  G ) ` 
0 ) )
145 reparpht.5 . . . . . . . . 9  |-  ( ph  ->  ( G `  1
)  =  1 )
146145adantr 465 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  1 )  =  1 )
147146oveq2d 6215 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 1 ) )  =  ( ( 1  -  s )  x.  1 ) )
148120mulid1d 9513 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  1 )  =  ( 1  -  s ) )
149147, 148eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 1 ) )  =  ( 1  -  s ) )
15070mulid1d 9513 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s  x.  1 )  =  s )
151149, 150oveq12d 6217 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) )  =  ( ( 1  -  s )  +  s ) )
152 npcan 9729 . . . . . 6  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( ( 1  -  s )  +  s )  =  1 )
153118, 70, 152sylancr 663 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  +  s )  =  1 )
154151, 153eqtrd 2495 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) )  =  1 )
155154fveq2d 5802 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) )  =  ( F ` 
1 ) )
156 simpr 461 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  y  =  s )
157156oveq2d 6215 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 1  -  y )  =  ( 1  -  s ) )
158 simpl 457 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  x  =  1 )
159158fveq2d 5802 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( G `  x )  =  ( G `  1 ) )
160157, 159oveq12d 6217 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( ( 1  -  s
)  x.  ( G `
 1 ) ) )
161156, 158oveq12d 6217 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( y  x.  x )  =  ( s  x.  1 ) )
162160, 161oveq12d 6217 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) ) )
163162fveq2d 5802 . . . . 5  |-  ( ( x  =  1  /\  y  =  s )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) ) )
164 fvex 5808 . . . . 5  |-  ( F `
 ( ( ( 1  -  s )  x.  ( G ` 
1 ) )  +  ( s  x.  1 ) ) )  e. 
_V
165163, 5, 164ovmpt2a 6330 . . . 4  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 H s )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) ) )
16694, 76, 165sylancr 663 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F `  ( ( ( 1  -  s )  x.  ( G `  1
) )  +  ( s  x.  1 ) ) ) )
167 fvco3 5876 . . . . . 6  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  1 )  =  ( F `  ( G `  1 )
) )
16840, 94, 167sylancl 662 . . . . 5  |-  ( ph  ->  ( ( F  o.  G ) `  1
)  =  ( F `
 ( G ` 
1 ) ) )
169145fveq2d 5802 . . . . 5  |-  ( ph  ->  ( F `  ( G `  1 )
)  =  ( F `
 1 ) )
170168, 169eqtrd 2495 . . . 4  |-  ( ph  ->  ( ( F  o.  G ) `  1
)  =  ( F `
 1 ) )
171170adantr 465 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  1 )  =  ( F ` 
1 ) )
172155, 166, 1713eqtr4d 2505 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( ( F  o.  G ) ` 
1 ) )
1734, 2, 65, 93, 114, 144, 172isphtpy2d 20690 1  |-  ( ph  ->  H  e.  ( ( F  o.  G ) ( PHtpy `  J ) F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2798    C_ wss 3435    |-> cmpt 4457    X. cxp 4945   ran crn 4948    o. ccom 4951   -->wf 5521   ` cfv 5525  (class class class)co 6199    |-> cmpt2 6201   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    + caddc 9395    x. cmul 9397    - cmin 9705   [,]cicc 11413   ↾t crest 14477   TopOpenctopn 14478  ℂfldccnfld 17942   Topctop 18629  TopOnctopon 18630    Cn ccn 18959    tX ctx 19264   IIcii 20582   PHtpycphtpy 20671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-iin 4281  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-map 7325  df-ixp 7373  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-fi 7771  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-ioo 11414  df-icc 11417  df-fz 11554  df-fzo 11665  df-seq 11923  df-exp 11982  df-hash 12220  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-hom 14380  df-cco 14381  df-rest 14479  df-topn 14480  df-0g 14498  df-gsum 14499  df-topgen 14500  df-pt 14501  df-prds 14504  df-xrs 14558  df-qtop 14563  df-imas 14564  df-xps 14566  df-mre 14642  df-mrc 14643  df-acs 14645  df-mnd 15533  df-submnd 15583  df-mulg 15666  df-cntz 15953  df-cmn 16399  df-psmet 17933  df-xmet 17934  df-met 17935  df-bl 17936  df-mopn 17937  df-cnfld 17943  df-top 18634  df-bases 18636  df-topon 18637  df-topsp 18638  df-cn 18962  df-cnp 18963  df-tx 19266  df-hmeo 19459  df-xms 20026  df-ms 20027  df-tms 20028  df-ii 20584  df-htpy 20673  df-phtpy 20674
This theorem is referenced by:  reparpht  20701
  Copyright terms: Public domain W3C validator