![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reofld | Structured version Visualization version Unicode version |
Description: The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.) |
Ref | Expression |
---|---|
reofld |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refld 19187 |
. 2
![]() ![]() | |
2 | isfld 17984 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | simplbi 462 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | drngring 17982 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 3, 4 | mp2b 10 |
. . 3
![]() ![]() ![]() |
6 | ringgrp 17785 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | ax-mp 5 |
. . . 4
![]() ![]() ![]() |
8 | grpmnd 16678 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | ax-mp 5 |
. . . . 5
![]() ![]() ![]() |
10 | retos 19186 |
. . . . 5
![]() ![]() | |
11 | simpl 459 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | simpr1 1014 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | simpr2 1015 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | simpr3 1016 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | 11, 12, 13, 14 | leadd1dd 10227 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15 | 3anassrs 1232 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16 | ex 436 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | 3impa 1203 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18 | rgen3 2814 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | rebase 19174 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | replusg 19178 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | rele2 19182 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 20, 21, 22 | isomnd 28464 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 9, 10, 19, 23 | mpbir3an 1190 |
. . . 4
![]() ![]() |
25 | isogrp 28465 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | 7, 24, 25 | mpbir2an 931 |
. . 3
![]() ![]() |
27 | mulge0 10132 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
28 | 27 | an4s 835 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 28 | ex 436 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 29 | rgen2a 2815 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | re0g 19180 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
32 | remulr 19179 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
33 | 20, 31, 32, 22 | isorng 28562 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 5, 26, 30, 33 | mpbir3an 1190 |
. 2
![]() ![]() |
35 | isofld 28565 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
36 | 1, 34, 35 | mpbir2an 931 |
1
![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1669 ax-4 1682 ax-5 1758 ax-6 1805 ax-7 1851 ax-8 1889 ax-9 1896 ax-10 1915 ax-11 1920 ax-12 1933 ax-13 2091 ax-ext 2431 ax-rep 4515 ax-sep 4525 ax-nul 4534 ax-pow 4581 ax-pr 4639 ax-un 6583 ax-cnex 9595 ax-resscn 9596 ax-1cn 9597 ax-icn 9598 ax-addcl 9599 ax-addrcl 9600 ax-mulcl 9601 ax-mulrcl 9602 ax-mulcom 9603 ax-addass 9604 ax-mulass 9605 ax-distr 9606 ax-i2m1 9607 ax-1ne0 9608 ax-1rid 9609 ax-rnegex 9610 ax-rrecex 9611 ax-cnre 9612 ax-pre-lttri 9613 ax-pre-lttrn 9614 ax-pre-ltadd 9615 ax-pre-mulgt0 9616 ax-addf 9618 ax-mulf 9619 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-3or 986 df-3an 987 df-tru 1447 df-ex 1664 df-nf 1668 df-sb 1798 df-eu 2303 df-mo 2304 df-clab 2438 df-cleq 2444 df-clel 2447 df-nfc 2581 df-ne 2624 df-nel 2625 df-ral 2742 df-rex 2743 df-reu 2744 df-rmo 2745 df-rab 2746 df-v 3047 df-sbc 3268 df-csb 3364 df-dif 3407 df-un 3409 df-in 3411 df-ss 3418 df-pss 3420 df-nul 3732 df-if 3882 df-pw 3953 df-sn 3969 df-pr 3971 df-tp 3973 df-op 3975 df-uni 4199 df-int 4235 df-iun 4280 df-br 4403 df-opab 4462 df-mpt 4463 df-tr 4498 df-eprel 4745 df-id 4749 df-po 4755 df-so 4756 df-fr 4793 df-we 4795 df-xp 4840 df-rel 4841 df-cnv 4842 df-co 4843 df-dm 4844 df-rn 4845 df-res 4846 df-ima 4847 df-pred 5380 df-ord 5426 df-on 5427 df-lim 5428 df-suc 5429 df-iota 5546 df-fun 5584 df-fn 5585 df-f 5586 df-f1 5587 df-fo 5588 df-f1o 5589 df-fv 5590 df-riota 6252 df-ov 6293 df-oprab 6294 df-mpt2 6295 df-om 6693 df-1st 6793 df-2nd 6794 df-tpos 6973 df-wrecs 7028 df-recs 7090 df-rdg 7128 df-1o 7182 df-oadd 7186 df-er 7363 df-en 7570 df-dom 7571 df-sdom 7572 df-fin 7573 df-pnf 9677 df-mnf 9678 df-xr 9679 df-ltxr 9680 df-le 9681 df-sub 9862 df-neg 9863 df-div 10270 df-nn 10610 df-2 10668 df-3 10669 df-4 10670 df-5 10671 df-6 10672 df-7 10673 df-8 10674 df-9 10675 df-10 10676 df-n0 10870 df-z 10938 df-dec 11052 df-uz 11160 df-fz 11785 df-struct 15123 df-ndx 15124 df-slot 15125 df-base 15126 df-sets 15127 df-ress 15128 df-plusg 15203 df-mulr 15204 df-starv 15205 df-tset 15209 df-ple 15210 df-ds 15212 df-unif 15213 df-0g 15340 df-preset 16173 df-poset 16191 df-plt 16204 df-toset 16280 df-ps 16446 df-tsr 16447 df-mgm 16488 df-sgrp 16527 df-mnd 16537 df-grp 16673 df-minusg 16674 df-subg 16814 df-cmn 17432 df-mgp 17724 df-ur 17736 df-ring 17782 df-cring 17783 df-oppr 17851 df-dvdsr 17869 df-unit 17870 df-invr 17900 df-dvr 17911 df-drng 17977 df-field 17978 df-subrg 18006 df-cnfld 18971 df-refld 19173 df-omnd 28462 df-ogrp 28463 df-orng 28560 df-ofld 28561 |
This theorem is referenced by: nn0omnd 28604 rearchi 28605 rerrext 28813 cnrrext 28814 |
Copyright terms: Public domain | W3C validator |