Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  renepnfd Structured version   Unicode version

Theorem renepnfd 9698
 Description: No (finite) real equals plus infinity. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rexrd.1
Assertion
Ref Expression
renepnfd

Proof of Theorem renepnfd
StepHypRef Expression
1 rexrd.1 . 2
2 renepnf 9695 . 2
31, 2syl 17 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wcel 1872   wne 2614  cr 9545   cpnf 9679 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-resscn 9603 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-rex 2777  df-rab 2780  df-v 3082  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-pw 3983  df-sn 3999  df-pr 4001  df-uni 4220  df-pnf 9684 This theorem is referenced by:  xaddnepnf  11535  dvfsumrlimge0  22980  dvfsumrlim  22981  dvfsumrlim2  22982  logno1  23579
 Copyright terms: Public domain W3C validator