MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remul2 Structured version   Unicode version

Theorem remul2 12915
Description: Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
remul2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( A  x.  ( Re `  B ) ) )

Proof of Theorem remul2
StepHypRef Expression
1 recn 9573 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
2 remul 12914 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
31, 2sylan 471 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4 rere 12907 . . . . 5  |-  ( A  e.  RR  ->  (
Re `  A )  =  A )
54adantr 465 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  A
)  =  A )
65oveq1d 6292 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  =  ( A  x.  ( Re `  B ) ) )
7 reim0 12903 . . . . 5  |-  ( A  e.  RR  ->  (
Im `  A )  =  0 )
87oveq1d 6292 . . . 4  |-  ( A  e.  RR  ->  (
( Im `  A
)  x.  ( Im
`  B ) )  =  ( 0  x.  ( Im `  B
) ) )
9 imcl 12896 . . . . . 6  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
109recnd 9613 . . . . 5  |-  ( B  e.  CC  ->  (
Im `  B )  e.  CC )
1110mul02d 9768 . . . 4  |-  ( B  e.  CC  ->  (
0  x.  ( Im
`  B ) )  =  0 )
128, 11sylan9eq 2523 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  =  0 )
136, 12oveq12d 6295 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  ( ( A  x.  ( Re
`  B ) )  -  0 ) )
14 recl 12895 . . . . 5  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514recnd 9613 . . . 4  |-  ( B  e.  CC  ->  (
Re `  B )  e.  CC )
16 mulcl 9567 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  B )  e.  CC )  -> 
( A  x.  (
Re `  B )
)  e.  CC )
171, 15, 16syl2an 477 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( A  x.  (
Re `  B )
)  e.  CC )
1817subid1d 9910 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( A  x.  ( Re `  B ) )  -  0 )  =  ( A  x.  ( Re `  B ) ) )
193, 13, 183eqtrd 2507 1  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( A  x.  ( Re `  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762   ` cfv 5581  (class class class)co 6277   CCcc 9481   RRcr 9482   0cc0 9483    x. cmul 9488    - cmin 9796   Recre 12882   Imcim 12883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198  df-2 10585  df-cj 12884  df-re 12885  df-im 12886
This theorem is referenced by:  rediv  12916  remul2d  13012  abscxp  22796  asinsin  22946
  Copyright terms: Public domain W3C validator