MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remim Structured version   Visualization version   Unicode version

Theorem remim 13173
Description: Value of the conjugate of a complex number. The value is the real part minus  _i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
remim  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )

Proof of Theorem remim
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cjval 13158 . 2  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
2 replim 13172 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
32oveq1d 6303 . . . . 5  |-  ( A  e.  CC  ->  ( A  +  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  +  ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
4 recl 13166 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54recnd 9666 . . . . . 6  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
6 ax-icn 9595 . . . . . . 7  |-  _i  e.  CC
7 imcl 13167 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
87recnd 9666 . . . . . . 7  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
9 mulcl 9620 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
106, 8, 9sylancr 668 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( Im `  A ) )  e.  CC )
115, 10, 5ppncand 10023 . . . . 5  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  +  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( Re `  A )  +  ( Re `  A ) ) )
123, 11eqtrd 2484 . . . 4  |-  ( A  e.  CC  ->  ( A  +  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( Re `  A )  +  ( Re `  A ) ) )
134, 4readdcld 9667 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  +  ( Re
`  A ) )  e.  RR )
1412, 13eqeltrd 2528 . . 3  |-  ( A  e.  CC  ->  ( A  +  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  e.  RR )
155, 10, 10pnncand 10022 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  -  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  ( Im `  A ) ) ) )
162oveq1d 6303 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )
176a1i 11 . . . . . . . 8  |-  ( A  e.  CC  ->  _i  e.  CC )
1817, 8, 8adddid 9664 . . . . . . 7  |-  ( A  e.  CC  ->  (
_i  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  =  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  A )
) ) )
1915, 16, 183eqtr4d 2494 . . . . . 6  |-  ( A  e.  CC  ->  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )  =  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) )
2019oveq2d 6304 . . . . 5  |-  ( A  e.  CC  ->  (
_i  x.  ( A  -  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) ) )  =  ( _i  x.  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) ) )
217, 7readdcld 9667 . . . . . . 7  |-  ( A  e.  CC  ->  (
( Im `  A
)  +  ( Im
`  A ) )  e.  RR )
2221recnd 9666 . . . . . 6  |-  ( A  e.  CC  ->  (
( Im `  A
)  +  ( Im
`  A ) )  e.  CC )
23 mulass 9624 . . . . . . 7  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
( Im `  A
)  +  ( Im
`  A ) )  e.  CC )  -> 
( ( _i  x.  _i )  x.  (
( Im `  A
)  +  ( Im
`  A ) ) )  =  ( _i  x.  ( _i  x.  ( ( Im `  A )  +  ( Im `  A ) ) ) ) )
246, 6, 23mp3an12 1353 . . . . . 6  |-  ( ( ( Im `  A
)  +  ( Im
`  A ) )  e.  CC  ->  (
( _i  x.  _i )  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  =  ( _i  x.  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) ) )
2522, 24syl 17 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  =  ( _i  x.  ( _i  x.  (
( Im `  A
)  +  ( Im
`  A ) ) ) ) )
2620, 25eqtr4d 2487 . . . 4  |-  ( A  e.  CC  ->  (
_i  x.  ( A  -  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  A )  +  ( Im `  A ) ) ) )
27 ixi 10238 . . . . . 6  |-  ( _i  x.  _i )  = 
-u 1
28 neg1rr 10711 . . . . . 6  |-  -u 1  e.  RR
2927, 28eqeltri 2524 . . . . 5  |-  ( _i  x.  _i )  e.  RR
30 remulcl 9621 . . . . 5  |-  ( ( ( _i  x.  _i )  e.  RR  /\  (
( Im `  A
)  +  ( Im
`  A ) )  e.  RR )  -> 
( ( _i  x.  _i )  x.  (
( Im `  A
)  +  ( Im
`  A ) ) )  e.  RR )
3129, 21, 30sylancr 668 . . . 4  |-  ( A  e.  CC  ->  (
( _i  x.  _i )  x.  ( (
Im `  A )  +  ( Im `  A ) ) )  e.  RR )
3226, 31eqeltrd 2528 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  ( A  -  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) ) )  e.  RR )
335, 10subcld 9983 . . . 4  |-  ( A  e.  CC  ->  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  e.  CC )
34 cju 10602 . . . 4  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
35 oveq2 6296 . . . . . . 7  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  ( A  +  x )  =  ( A  +  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
3635eleq1d 2512 . . . . . 6  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )  e.  RR ) )
37 oveq2 6296 . . . . . . . 8  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  ( A  -  x )  =  ( A  -  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
3837oveq2d 6304 . . . . . . 7  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) ) )
3938eleq1d 2512 . . . . . 6  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  (
( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR ) )
4036, 39anbi12d 716 . . . . 5  |-  ( x  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) )  e.  RR  /\  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR ) ) )
4140riota2 6272 . . . 4  |-  ( ( ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) )  e.  CC  /\  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  ->  ( (
( A  +  ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) ) )  e.  RR  /\  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR )  <->  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )  =  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
4233, 34, 41syl2anc 666 . . 3  |-  ( A  e.  CC  ->  (
( ( A  +  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) )  e.  RR  /\  ( _i  x.  ( A  -  ( (
Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) ) )  e.  RR )  <->  ( iota_ x  e.  CC  ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )  =  ( ( Re `  A )  -  (
_i  x.  ( Im `  A ) ) ) ) )
4314, 32, 42mpbi2and 931 . 2  |-  ( A  e.  CC  ->  ( iota_ x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )  =  ( ( Re `  A )  -  ( _i  x.  ( Im `  A ) ) ) )
441, 43eqtrd 2484 1  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886   E!wreu 2738   ` cfv 5581   iota_crio 6249  (class class class)co 6288   CCcc 9534   RRcr 9535   1c1 9537   _ici 9538    + caddc 9539    x. cmul 9541    - cmin 9857   -ucneg 9858   *ccj 13152   Recre 13153   Imcim 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-po 4754  df-so 4755  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-2 10665  df-cj 13155  df-re 13156  df-im 13157
This theorem is referenced by:  cjreb  13179  recj  13180  remullem  13184  imcj  13188  cjadd  13197  cjneg  13203  imval2  13207  cji  13215  remimd  13254
  Copyright terms: Public domain W3C validator