MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reltpos Structured version   Unicode version

Theorem reltpos 6952
Description: The transposition is a relation. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
reltpos  |-  Rel tpos  F

Proof of Theorem reltpos
StepHypRef Expression
1 tposssxp 6951 . 2  |- tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )
2 relxp 5098 . 2  |-  Rel  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )
3 relss 5078 . 2  |-  (tpos  F  C_  ( ( `' dom  F  u.  { (/) } )  X.  ran  F )  ->  ( Rel  (
( `' dom  F  u.  { (/) } )  X. 
ran  F )  ->  Rel tpos  F ) )
41, 2, 3mp2 9 1  |-  Rel tpos  F
Colors of variables: wff setvar class
Syntax hints:    u. cun 3459    C_ wss 3461   (/)c0 3783   {csn 4016    X. cxp 4986   `'ccnv 4987   dom cdm 4988   ran crn 4989   Rel wrel 4993  tpos ctpos 6946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-br 4440  df-opab 4498  df-mpt 4499  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-tpos 6947
This theorem is referenced by:  brtpos2  6953  relbrtpos  6958  dftpos2  6964  dftpos3  6965  tpostpos  6967
  Copyright terms: Public domain W3C validator