MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdmrn Unicode version

Theorem relssdmrn 5349
Description: A relation is included in the cross product of its domain and range. Exercise 4.12(t) of [Mendelson] p. 235. (Contributed by NM, 3-Aug-1994.)
Assertion
Ref Expression
relssdmrn  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )

Proof of Theorem relssdmrn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 20 . 2  |-  ( Rel 
A  ->  Rel  A )
2 19.8a 1758 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. y <. x ,  y >.  e.  A )
3 19.8a 1758 . . . 4  |-  ( <.
x ,  y >.  e.  A  ->  E. x <. x ,  y >.  e.  A )
4 opelxp 4867 . . . . 5  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( x  e.  dom  A  /\  y  e.  ran  A ) )
5 vex 2919 . . . . . . 7  |-  x  e. 
_V
65eldm2 5027 . . . . . 6  |-  ( x  e.  dom  A  <->  E. y <. x ,  y >.  e.  A )
7 vex 2919 . . . . . . 7  |-  y  e. 
_V
87elrn2 5068 . . . . . 6  |-  ( y  e.  ran  A  <->  E. x <. x ,  y >.  e.  A )
96, 8anbi12i 679 . . . . 5  |-  ( ( x  e.  dom  A  /\  y  e.  ran  A )  <->  ( E. y <. x ,  y >.  e.  A  /\  E. x <. x ,  y >.  e.  A ) )
104, 9bitri 241 . . . 4  |-  ( <.
x ,  y >.  e.  ( dom  A  X.  ran  A )  <->  ( E. y <. x ,  y
>.  e.  A  /\  E. x <. x ,  y
>.  e.  A ) )
112, 3, 10sylanbrc 646 . . 3  |-  ( <.
x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( dom  A  X.  ran  A ) )
1211a1i 11 . 2  |-  ( Rel 
A  ->  ( <. x ,  y >.  e.  A  -> 
<. x ,  y >.  e.  ( dom  A  X.  ran  A ) ) )
131, 12relssdv 4927 1  |-  ( Rel 
A  ->  A  C_  ( dom  A  X.  ran  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    e. wcel 1721    C_ wss 3280   <.cop 3777    X. cxp 4835   dom cdm 4837   ran crn 4838   Rel wrel 4842
This theorem is referenced by:  cnvssrndm  5350  cossxp  5351  relrelss  5352  relfld  5354  cnvexg  5364  fssxp  5561  resfunexgALT  5917  cofunexg  5918  fnexALT  5921  oprabss  6118  erssxp  6887  wunco  8564  imasless  13720  sylow2a  15208  gsum2d  15501  znleval  16790  tsmsxp  18137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-br 4173  df-opab 4227  df-xp 4843  df-rel 4844  df-cnv 4845  df-dm 4847  df-rn 4848
  Copyright terms: Public domain W3C validator