MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relresfld Structured version   Unicode version

Theorem relresfld 5363
Description: Restriction of a relation to its field. (Contributed by FL, 15-Apr-2012.)
Assertion
Ref Expression
relresfld  |-  ( Rel 
R  ->  ( R  |` 
U. U. R )  =  R )

Proof of Theorem relresfld
StepHypRef Expression
1 relfld 5362 . . . 4  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
21reseq2d 5109 . . 3  |-  ( Rel 
R  ->  ( R  |` 
U. U. R )  =  ( R  |`  ( dom  R  u.  ran  R
) ) )
3 resundi 5123 . . 3  |-  ( R  |`  ( dom  R  u.  ran  R ) )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )
4 eqtr 2459 . . . 4  |-  ( ( ( R  |`  U. U. R )  =  ( R  |`  ( dom  R  u.  ran  R ) )  /\  ( R  |`  ( dom  R  u.  ran  R ) )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) ) )  ->  ( R  |`  U. U. R
)  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) ) )
5 resss 5133 . . . . 5  |-  ( R  |`  ran  R )  C_  R
6 resdm 5147 . . . . 5  |-  ( Rel 
R  ->  ( R  |` 
dom  R )  =  R )
7 ssequn2 3528 . . . . . 6  |-  ( ( R  |`  ran  R ) 
C_  R  <->  ( R  u.  ( R  |`  ran  R
) )  =  R )
8 uneq1 3502 . . . . . . . . 9  |-  ( ( R  |`  dom  R )  =  R  ->  (
( R  |`  dom  R
)  u.  ( R  |`  ran  R ) )  =  ( R  u.  ( R  |`  ran  R
) ) )
98eqeq2d 2453 . . . . . . . 8  |-  ( ( R  |`  dom  R )  =  R  ->  (
( R  |`  U. U. R )  =  ( ( R  |`  dom  R
)  u.  ( R  |`  ran  R ) )  <-> 
( R  |`  U. U. R )  =  ( R  u.  ( R  |`  ran  R ) ) ) )
10 eqtr 2459 . . . . . . . . 9  |-  ( ( ( R  |`  U. U. R )  =  ( R  u.  ( R  |`  ran  R ) )  /\  ( R  u.  ( R  |`  ran  R
) )  =  R )  ->  ( R  |` 
U. U. R )  =  R )
1110ex 434 . . . . . . . 8  |-  ( ( R  |`  U. U. R
)  =  ( R  u.  ( R  |`  ran  R ) )  -> 
( ( R  u.  ( R  |`  ran  R
) )  =  R  ->  ( R  |`  U.
U. R )  =  R ) )
129, 11syl6bi 228 . . . . . . 7  |-  ( ( R  |`  dom  R )  =  R  ->  (
( R  |`  U. U. R )  =  ( ( R  |`  dom  R
)  u.  ( R  |`  ran  R ) )  ->  ( ( R  u.  ( R  |`  ran  R ) )  =  R  ->  ( R  |` 
U. U. R )  =  R ) ) )
1312com3r 79 . . . . . 6  |-  ( ( R  u.  ( R  |`  ran  R ) )  =  R  ->  (
( R  |`  dom  R
)  =  R  -> 
( ( R  |`  U.
U. R )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )  ->  ( R  |` 
U. U. R )  =  R ) ) )
147, 13sylbi 195 . . . . 5  |-  ( ( R  |`  ran  R ) 
C_  R  ->  (
( R  |`  dom  R
)  =  R  -> 
( ( R  |`  U.
U. R )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )  ->  ( R  |` 
U. U. R )  =  R ) ) )
155, 6, 14mpsyl 63 . . . 4  |-  ( Rel 
R  ->  ( ( R  |`  U. U. R
)  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) )  -> 
( R  |`  U. U. R )  =  R ) )
164, 15syl5com 30 . . 3  |-  ( ( ( R  |`  U. U. R )  =  ( R  |`  ( dom  R  u.  ran  R ) )  /\  ( R  |`  ( dom  R  u.  ran  R ) )  =  ( ( R  |`  dom  R )  u.  ( R  |`  ran  R ) ) )  ->  ( Rel  R  ->  ( R  |` 
U. U. R )  =  R ) )
172, 3, 16sylancl 662 . 2  |-  ( Rel 
R  ->  ( Rel  R  ->  ( R  |`  U.
U. R )  =  R ) )
1817pm2.43i 47 1  |-  ( Rel 
R  ->  ( R  |` 
U. U. R )  =  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    u. cun 3325    C_ wss 3327   U.cuni 4090   dom cdm 4839   ran crn 4840    |` cres 4841   Rel wrel 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pr 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-xp 4845  df-rel 4846  df-cnv 4847  df-dm 4849  df-rn 4850  df-res 4851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator