![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopab | Structured version Visualization version Unicode version |
Description: A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopab |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2461 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | relopabi 4977 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-sep 4538 ax-nul 4547 ax-pr 4652 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-ral 2753 df-rex 2754 df-rab 2757 df-v 3058 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-nul 3743 df-if 3893 df-sn 3980 df-pr 3982 df-op 3986 df-opab 4475 df-xp 4858 df-rel 4859 |
This theorem is referenced by: opabid2 4982 inopab 4983 difopab 4984 dfres2 5175 cnvopab 5255 funopab 5633 relmptopab 6543 elopabi 6880 relmpt2opab 6904 shftfn 13184 cicer 15759 joindmss 16301 meetdmss 16315 lgsquadlem3 24332 perpln1 24803 perpln2 24804 fpwrelmapffslem 28365 fpwrelmap 28366 relfae 29118 prtlem12 32483 dicvalrelN 34797 diclspsn 34806 dih1dimatlem 34941 rel1wlk 39688 |
Copyright terms: Public domain | W3C validator |