MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogcld Structured version   Unicode version

Theorem relogcld 21957
Description: Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
relogcld.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
relogcld  |-  ( ph  ->  ( log `  A
)  e.  RR )

Proof of Theorem relogcld
StepHypRef Expression
1 relogcld.1 . 2  |-  ( ph  ->  A  e.  RR+ )
2 relogcl 21912 . 2  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
31, 2syl 16 1  |-  ( ph  ->  ( log `  A
)  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1755   ` cfv 5406   RRcr 9269   RR+crp 10979   logclog 21891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-ef 13336  df-sin 13338  df-cos 13339  df-pi 13341  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-limc 21183  df-dv 21184  df-log 21893
This theorem is referenced by:  logcnlem3  21974  advlogexp  21985  logccv  21993  recxpcl  22005  cxpsqr  22033  loglesqr  22081  ang180lem2  22091  isosctrlem2  22102  atanlogaddlem  22193  atantan  22203  birthdaylem2  22231  birthdaylem3  22232  amgmlem  22268  emcllem1  22274  emcllem2  22275  emcllem3  22276  emcllem4  22277  emcllem5  22278  emcllem6  22279  harmonicubnd  22288  fsumharmonic  22290  chtf  22331  efchtcl  22334  chtge0  22335  vmacl  22341  chtprm  22376  chtdif  22381  efchtdvds  22382  prmorcht  22401  vmalelog  22429  chtleppi  22434  chtublem  22435  fsumvma2  22438  pclogsum  22439  vmasum  22440  chpval2  22442  chpchtsum  22443  chpub  22444  logfacubnd  22445  logfaclbnd  22446  logexprlim  22449  logfacrlim2  22450  bposlem1  22508  bposlem9  22516  chebbnd1lem1  22603  chebbnd1lem2  22604  chebbnd1lem3  22605  chtppilimlem1  22607  chpchtlim  22613  vmadivsum  22616  vmadivsumb  22617  rplogsumlem1  22618  rplogsumlem2  22619  rpvmasumlem  22621  dchrvmasumlem1  22629  dchrvmasum2lem  22630  dchrvmasum2if  22631  dchrvmasumiflem1  22635  dchrvmasumiflem2  22636  rplogsum  22661  mulogsumlem  22665  mulogsum  22666  mulog2sumlem1  22668  mulog2sumlem2  22669  mulog2sumlem3  22670  vmalogdivsum2  22672  vmalogdivsum  22673  2vmadivsumlem  22674  logsqvma  22676  logsqvma2  22677  log2sumbnd  22678  selberglem2  22680  selbergb  22683  selberg2lem  22684  selberg2b  22686  chpdifbndlem1  22687  chpdifbndlem2  22688  logdivbnd  22690  selberg3lem1  22691  selberg3lem2  22692  selberg3  22693  selberg4lem1  22694  selberg4  22695  selberg3r  22703  selberg4r  22704  selberg34r  22705  pntsf  22707  pntsval2  22710  pntrlog2bndlem1  22711  pntrlog2bndlem2  22712  pntrlog2bndlem3  22713  pntrlog2bndlem4  22714  pntrlog2bndlem5  22715  pntrlog2bndlem6  22717  pntrlog2bnd  22718  pntpbnd1a  22719  pntpbnd2  22721  pntibndlem2  22725  pntlemb  22731  pntlemg  22732  pntlemh  22733  pntlemn  22734  pntlemr  22736  pntlemj  22737  pntlemf  22739  pntlemk  22740  pntlemo  22741  ostth2lem4  22770  ostth2  22771  ostth3  22772  xrge0iifcnv  26217  xrge0iifiso  26219  xrge0iifhom  26221  rnlogbcl  26314  logbrec  26318  logblt  26319  zetacvg  26849  lgamgulmlem3  26865  lgamgulmlem4  26866  lgamgulmlem5  26867  lgamgulmlem6  26868  lgamgulm2  26870  lgambdd  26871  lgamcvg2  26889  gamcvg  26890  gamcvg2lem  26893  relgamcl  26896  lgam1  26898  stirlinglem4  29718  stirlinglem11  29725  stirlinglem12  29726  stirlinglem13  29727
  Copyright terms: Public domain W3C validator