MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogcld Structured version   Unicode version

Theorem relogcld 22729
Description: Closure of the natural logarithm function. (Contributed by Mario Carneiro, 29-May-2016.)
Hypothesis
Ref Expression
relogcld.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
relogcld  |-  ( ph  ->  ( log `  A
)  e.  RR )

Proof of Theorem relogcld
StepHypRef Expression
1 relogcld.1 . 2  |-  ( ph  ->  A  e.  RR+ )
2 relogcl 22684 . 2  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
31, 2syl 16 1  |-  ( ph  ->  ( log `  A
)  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1762   ` cfv 5579   RRcr 9480   RR+crp 11209   logclog 22663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-sum 13458  df-ef 13654  df-sin 13656  df-cos 13657  df-pi 13659  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665
This theorem is referenced by:  logcnlem3  22746  advlogexp  22757  logccv  22765  recxpcl  22777  cxpsqr  22805  loglesqr  22853  ang180lem2  22863  isosctrlem2  22874  atanlogaddlem  22965  atantan  22975  birthdaylem2  23003  birthdaylem3  23004  amgmlem  23040  emcllem1  23046  emcllem2  23047  emcllem3  23048  emcllem4  23049  emcllem5  23050  emcllem6  23051  harmonicubnd  23060  fsumharmonic  23062  chtf  23103  efchtcl  23106  chtge0  23107  vmacl  23113  chtprm  23148  chtdif  23153  efchtdvds  23154  prmorcht  23173  vmalelog  23201  chtleppi  23206  chtublem  23207  fsumvma2  23210  pclogsum  23211  vmasum  23212  chpval2  23214  chpchtsum  23215  chpub  23216  logfacubnd  23217  logfaclbnd  23218  logexprlim  23221  logfacrlim2  23222  bposlem1  23280  bposlem9  23288  chebbnd1lem1  23375  chebbnd1lem2  23376  chebbnd1lem3  23377  chtppilimlem1  23379  chpchtlim  23385  vmadivsum  23388  vmadivsumb  23389  rplogsumlem1  23390  rplogsumlem2  23391  rpvmasumlem  23393  dchrvmasumlem1  23401  dchrvmasum2lem  23402  dchrvmasum2if  23403  dchrvmasumiflem1  23407  dchrvmasumiflem2  23408  rplogsum  23433  mulogsumlem  23437  mulogsum  23438  mulog2sumlem1  23440  mulog2sumlem2  23441  mulog2sumlem3  23442  vmalogdivsum2  23444  vmalogdivsum  23445  2vmadivsumlem  23446  logsqvma  23448  logsqvma2  23449  log2sumbnd  23450  selberglem2  23452  selbergb  23455  selberg2lem  23456  selberg2b  23458  chpdifbndlem1  23459  chpdifbndlem2  23460  logdivbnd  23462  selberg3lem1  23463  selberg3lem2  23464  selberg3  23465  selberg4lem1  23466  selberg4  23467  selberg3r  23475  selberg4r  23476  selberg34r  23477  pntsf  23479  pntsval2  23482  pntrlog2bndlem1  23483  pntrlog2bndlem2  23484  pntrlog2bndlem3  23485  pntrlog2bndlem4  23486  pntrlog2bndlem5  23487  pntrlog2bndlem6  23489  pntrlog2bnd  23490  pntpbnd1a  23491  pntpbnd2  23493  pntibndlem2  23497  pntlemb  23503  pntlemg  23504  pntlemh  23505  pntlemn  23506  pntlemr  23508  pntlemj  23509  pntlemf  23511  pntlemk  23512  pntlemo  23513  ostth2lem4  23542  ostth2  23543  ostth3  23544  xrge0iifcnv  27401  xrge0iifiso  27403  xrge0iifhom  27405  rnlogbcl  27507  logbrec  27511  logblt  27512  zetacvg  28047  lgamgulmlem3  28063  lgamgulmlem4  28064  lgamgulmlem5  28065  lgamgulmlem6  28066  lgamgulm2  28068  lgambdd  28069  lgamcvg2  28087  gamcvg  28088  gamcvg2lem  28091  relgamcl  28094  lgam1  28096  stirlinglem4  31196  stirlinglem11  31203  stirlinglem12  31204  stirlinglem13  31205
  Copyright terms: Public domain W3C validator