MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relogcl Structured version   Unicode version

Theorem relogcl 21986
Description: Closure of the natural logarithm function on positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.)
Assertion
Ref Expression
relogcl  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )

Proof of Theorem relogcl
StepHypRef Expression
1 fvres 5701 . 2  |-  ( A  e.  RR+  ->  ( ( log  |`  RR+ ) `  A )  =  ( log `  A ) )
2 relogf1o 21977 . . . 4  |-  ( log  |`  RR+ ) : RR+ -1-1-onto-> RR
3 f1of 5638 . . . 4  |-  ( ( log  |`  RR+ ) :
RR+
-1-1-onto-> RR  ->  ( log  |`  RR+ ) : RR+ --> RR )
42, 3ax-mp 5 . . 3  |-  ( log  |`  RR+ ) : RR+ --> RR
54ffvelrni 5839 . 2  |-  ( A  e.  RR+  ->  ( ( log  |`  RR+ ) `  A )  e.  RR )
61, 5eqeltrrd 2516 1  |-  ( A  e.  RR+  ->  ( log `  A )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1761    |` cres 4838   -->wf 5411   -1-1-onto->wf1o 5414   ` cfv 5415   RRcr 9277   RR+crp 10987   logclog 21965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-addf 9357  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-pm 7213  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-ioc 11301  df-ico 11302  df-icc 11303  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-shft 12552  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-limsup 12945  df-clim 12962  df-rlim 12963  df-sum 13160  df-ef 13349  df-sin 13351  df-cos 13352  df-pi 13354  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-fbas 17773  df-fg 17774  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-lp 18699  df-perf 18700  df-cn 18790  df-cnp 18791  df-haus 18878  df-tx 19094  df-hmeo 19287  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-xms 19854  df-ms 19855  df-tms 19856  df-cncf 20413  df-limc 21300  df-dv 21301  df-log 21967
This theorem is referenced by:  logneg  21995  lognegb  21997  relogoprlem  21998  reexplog  22002  relogexp  22003  logfac  22008  logleb  22011  rplogcl  22012  logmul2  22024  logdiv2  22025  abslogle  22026  logdivlti  22028  logdivlt  22029  logdivle  22030  relogcld  22031  advlog  22058  advlogexp  22059  logccv  22067  logcxp  22073  rpcxpcl  22080  cxpmul  22092  abscxp  22096  cxple2  22101  logsqr  22108  dvcxp1  22139  dvcxp2  22140  loglesqr  22155  log2ub  22303  birthday  22307  cxploglim  22330  cxploglim2  22331  amgmlem  22342  logdifbnd  22346  emcllem7  22354  emre  22358  emgt0  22359  harmonicbnd3  22360  harmoniclbnd  22361  harmonicbnd4  22363  cht2  22469  chtleppi  22508  chtublem  22509  chtub  22510  logfacubnd  22519  logfaclbnd  22520  logfacbnd3  22521  logfacrlim  22522  logexprlim  22523  efexple  22579  bposlem6  22587  bposlem7  22588  bposlem8  22589  bposlem9  22590  chebbnd1lem3  22679  chebbnd1  22680  chto1ub  22684  vmadivsum  22690  rpvmasumlem  22695  dchrvmasumlem2  22706  dchrvmasumlema  22708  dchrvmasumiflem1  22709  dchrvmasumiflem2  22710  dchrisum0fno1  22719  rpvmasum2  22720  dchrisum0re  22721  rpvmasum  22734  rplogsum  22735  dirith2  22736  logdivsum  22741  mulog2sumlem2  22743  mulog2sumlem3  22744  logsqvma  22750  log2sumbnd  22752  selberglem1  22753  selberglem2  22754  selberglem3  22755  selberg  22756  selberg2lem  22758  selberg2  22759  pntrsumo1  22773  selbergr  22776  pntrlog2bndlem4  22788  pntibndlem3  22800  xrge0iifiso  26301  relogbcl  26397  log2le1  26402  relgamcl  26978  reglogcl  29156  reglogltb  29157  reglogleb  29158  reglogmul  29159  reglogexp  29160  reglogbas  29161  reglog1  29162  stirlinglem12  29805  stirlinglem13  29806  stirlinglem14  29807
  Copyright terms: Public domain W3C validator