MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reli Unicode version

Theorem reli 4720
Description: The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
reli  |-  Rel  _I

Proof of Theorem reli
StepHypRef Expression
1 dfid3 4203 . 2  |-  _I  =  { <. x ,  y
>.  |  x  =  y }
21relopabi 4718 1  |-  Rel  _I
Colors of variables: wff set class
Syntax hints:    = wceq 1619    _I cid 4197   Rel wrel 4585
This theorem is referenced by:  ideqg  4742  issetid  4745  iss  4905  intirr  4968  funi  5142  f1ovi  5369  idssen  6792  idsset  23605
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-opab 3975  df-id 4202  df-xp 4594  df-rel 4595
  Copyright terms: Public domain W3C validator