MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfull Structured version   Unicode version

Theorem relfull 14801
Description: The set of full functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
relfull  |-  Rel  ( C Full  D )

Proof of Theorem relfull
StepHypRef Expression
1 fullfunc 14799 . 2  |-  ( C Full 
D )  C_  ( C  Func  D )
2 relfunc 14755 . 2  |-  Rel  ( C  Func  D )
3 relss 4914 . 2  |-  ( ( C Full  D )  C_  ( C  Func  D )  ->  ( Rel  ( C  Func  D )  ->  Rel  ( C Full  D ) ) )
41, 2, 3mp2 9 1  |-  Rel  ( C Full  D )
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3316   Rel wrel 4832  (class class class)co 6080    Func cfunc 14747   Full cful 14795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-1st 6566  df-2nd 6567  df-func 14751  df-full 14797
This theorem is referenced by:  fullpropd  14813  cofull  14827
  Copyright terms: Public domain W3C validator