MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfull Structured version   Unicode version

Theorem relfull 14922
Description: The set of full functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
relfull  |-  Rel  ( C Full  D )

Proof of Theorem relfull
StepHypRef Expression
1 fullfunc 14920 . 2  |-  ( C Full 
D )  C_  ( C  Func  D )
2 relfunc 14876 . 2  |-  Rel  ( C  Func  D )
3 relss 5027 . 2  |-  ( ( C Full  D )  C_  ( C  Func  D )  ->  ( Rel  ( C  Func  D )  ->  Rel  ( C Full  D ) ) )
41, 2, 3mp2 9 1  |-  Rel  ( C Full  D )
Colors of variables: wff setvar class
Syntax hints:    C_ wss 3428   Rel wrel 4945  (class class class)co 6192    Func cfunc 14868   Full cful 14916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fv 5526  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-1st 6679  df-2nd 6680  df-func 14872  df-full 14918
This theorem is referenced by:  fullpropd  14934  cofull  14948
  Copyright terms: Public domain W3C validator